Engineering Physics I PHYS 1600

MWF 11:00-11:50 am

- Instructor: Dr. Turker Topcu
- Office: 115 Allison Lab
- Office Hours: Tue and Wed between 2:00-4:00 pm
- E-mail: topcut1@auburn.edu
- Web page: http://www.auburn.edu/topcut1/phys1600.htm Most of the class information will be posted through this web page.
- Syllabus and schedule on web page

Labs

- Once a week for 2 hrs and 50 mins
- First 50 mins review/weekly quiz
- Remainder of time will be used to perform weekly experiment
- There no lab manuals in print. Print out and read the lab manuals before coming to the lab

First lab: Prerequisite Math Quiz.
Depending on your score, you may receive an email requesting a meeting. If you do not come and see me, this course will be dropped from your schedule.

Homework

MasteringPhysics Website

 http://www.masteringphysics.com/- Register and create an account.
- Add this course to your account. The course ID is TOPCUPHYS1600
- There are tutorials on the website for how to use it for doing the homework
- Complete the Introduction to MasteringPhysics assignment to familiarize yourself with the use of the web site
- Students get feedback, hints, several chances to get the answer right etc.

Chapter 1. Concepts of Motion

Topics:

- The Particle Model
- Position and Time
- Velocity
- Linear Acceleration
- Motion in One Dimension
- Solving Problems in Physics
- Units and Significant Figures

What is a "particle"?

A. Any part of an atom
B. An object that can be represented as a mass at a single point in space
C. A part of a whole
D. An object that can be represented as a single point in time
E. An object that has no top or bottom, no front or back

What is a "particle"?

A. Any part of an atom
B. An object that can be represented as a mass at a single point in space
C. A part of a whole
D. An object that can be represented as a single point in time
E. An object that has no top or bottom, no front or back

Position and Time

Position and time measurements done on the motion diagram of a basketball

Position and Time

The displacement vector is $\Delta \vec{r}=\vec{r}_{f}-\vec{r}_{i}$
Change in time is $\Delta t=t_{f}-t_{i}$

Interpreting a Position Graph

Motion of a car along a straight road

Average Speed, Average Velocity

To quantify an object's fastness or slowness, we define a ratio as follows:

$$
\text { average speed }=\frac{\text { distance traveled }}{\text { time interval spent traveling }}
$$

Average speed is a scalar quantity. Average velocity is a vector quantity.

$$
\vec{v}_{\mathrm{avg}}=\frac{\Delta \vec{r}}{\Delta t}
$$

Motion diagrams with velocity vectors

A tortoise racing a hare

A car accelerating up a hill

The length of each arrow represents the average speed. The hare moves faster than the tortoise.

Linear Acceleration

Because velocity is a vector, it can change in two possible ways.
1.The magnitude can change
2. The direction can change

The average acceleration is $\vec{a}=\frac{\Delta \vec{v}}{\Delta t}$

Finding the acceleration vector

$$
\vec{a}=\frac{\vec{v}_{n+1}-\vec{v}_{n}}{t_{n+1}-t_{n}}
$$

132
4

Landing on Mars

Skiing

Tossing up a ball

Units and Significant Figures

SI (formerly MKS) units:
 Mass: kg Length: \mathbf{m} Time: \mathbf{s}

Units conversions

1. Write the conversion factor as a ratio equal to one
$\frac{10^{-6} \mathrm{~m}}{1 \mu \mathrm{~m}}=1 \quad ; \quad \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=1$
2. Multiply the expression with the ratio to convert the units

$$
\begin{array}{r}
3.5 \mu \mathrm{~m} \times \frac{10^{-6} \mathrm{~m}}{1 \mu \mathrm{~m}}=3.5 \times 10^{-6} \mathrm{~m} \\
2.00 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}=0.610 \mathrm{~m}
\end{array}
$$

Metric Prefixes

kilo- $(\mathrm{k}-)$	10^{3}	1 thousand
centi- $(\mathrm{c}-)$	10^{-2}	1 hundredth
milli- $(\mathrm{m}-)$	10^{-3}	1 thousandth
micro- $(\mu-)$	10^{-6}	1 millionth
nano- $(\mathrm{n}-)$	10^{-9}	1 billionth
pico- $(\mathrm{p}-)$	10^{-12}	1 trillionth
femto- $(\mathrm{f}-)$	10^{-15}	1 quadrillionth

Units and Significant Figures

- The number of significant figures \neq the number of decimal places.
- Changing units shifts the decimal point but does not change the number of significant figures.

Rules for Significant Figures

- All nonzero digits are significant:
- 1.234 g has 4 significant figures,
- 1.2 g has 2 significant figures.
- Zeroes between nonzero digits are significant:
- 1002 kg has 4 significant figures, 3.07 mL has 3 significant figures.
- Leading zeros to the left of the first nonzero digits are not significant; such zeroes merely indicate the position of the decimal point:
- 0.001 g has only 1 significant figure, 0.012 g has 2 significant figures.
- Trailing zeroes that are also to the right of a decimal point in a number are significant:
- 0.0230 mL has 3 significant figures, 0.20 g has 2 significant figures.
- When a number ends in zeroes that are not to the right of a decimal point, the zeroes are not necessarily significant. Write the number in scientific notation remove ambiguity:
- 50,600 calories may be 3,4 , or 5 significant figures.
5.06×10^{4} calories (3 significant figures)
5.060×10^{4} calories (4 significant figures), or
5.0600×10^{4} calories (5 significant figures).

Rules for Mathematical operations

- In addition and subtraction, the result is rounded off so that it has the same number of decimal places as the measurement having the fewest decimal places
-100 (assume 3 sig. fig.) + 23.643 (5 sig. fig.) = [123.643]

$$
=124
$$

- In multiplication and division, the result should be rounded off so as to have the same number of significant figures as in the component with the least number of significant figures.

$$
\begin{aligned}
-3.0(2 \text { sig. fig. }) \times 12.60(4 \text { sig. fig. }) & =[37.8000] \\
& =38
\end{aligned}
$$

