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Ramsey Spectroscopy (single atom)

1. Prepare atom in |g〉

2. A π/2-pulse rotates the state vector around y -axis

3. Free evolution (interrogation) time T . Accumulate phase δω = (ω − ω0)T .

4. A second π/2-pulse rotates state vector around x-axis
(it could be the same y -axis - it will still work the same way)

5. Measure whether the atom is in the |g〉 or |e〉 state. Depending on whether
δω was positive or negative, the probability find the atom in either the
upper or the lower state is larger. Adjust the frequency to compensate.
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Clock stability

I Frequency uncertainty from a single measurement of N 2-level atoms with
collective spin vector J =

∑N
n Jn:

δφ =
∆Jz(φ)

|∂〈∆Jz(φ)〉/∂φ|

I δφ can be minimized either by minimizing the projection noise (spin
squeezing) OR maximizing the signal slope (GHZ states).

I For “uncorrelated” atoms: δφ ≥ 1√
N

(Called the Standard Quantum limit (SQL).)

I For “correlated” atoms: δφ ≥ 1
N

(Called the Heisenberg limit.)

See, for example, A. Andre and M. D. Lukin PRA 65, 053819 (2002), A. Andre, “Nonclassical

states of light and atomic ensembles: Generation and New Applications”, PhD thesis, Harvard

University, Cambridge, Massachusetts (2005), A. D. Ludlow et al., arXiv:1407.3493

[physics.atom-ph]
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Correlated versus Uncorrelated

I The motivation is to beat the Standard quantum limit (SQL) and get
closer to the Heisenberg limit in a Ramsey spectroscopic scheme for
improved atomic clock stability.

1. With Ramsey spectroscopy using N uncorrelated atoms, the minimal
attainable phase sensitivity is 1/

√
N (SQL).

2. This limit can be beaten by introducing correlations between the atoms :
Assume, after the first π/2-pulse, we have the state (GHZ)

|ψM〉 =
1√
2

(
|ggg · · · g〉+ |eee · · · e〉

)
Note that this state cannot be prepared by the first π/2-pulse in the Ramsey

sequence from
∑

i |g〉i (uncorrelated). Our aim is to come up with a scheme

that will generate |ψM〉 so that the Ramsey sequence can resume with its usual

step 2 from this point on. This will give a minimal phase sensitivity of 1/N.

I We describe a scheme for divalent atoms for creating GHZ states in a
Rydberg gas adapted from a scheme described for Rb in
Saffman and Mølmer, PRL 102, 240502 (2009).
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Motivation

How do we generate a maximally
correlated (entangled) state to
feed into the 2nd step of the

Ramsey sequence?
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Distributed quantum network of clocks

* Create a clock network from a set
of spatially separated atomic
clocks.

* Preparing these clocks in a single
distributed entangled state
drastically improves clock stability.

* Can use to establish an
international time scale.
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Distributed quantum network of clocks (cont’d)

Atomic cloud Atomic cloud

Node 1 Node 2

Ancilla Ancilla

1. The state of the ancilla atom: |g〉a.

The state of the cloud: |gg · · · g〉c = |g〉⊗Nc .
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Distributed quantum network of clocks (cont’d)

Atomic cloud Atomic cloud

Node 1 Node 2
Bell pair

1. The state of the ancilla atom: |g〉a.

The state of the cloud: |gg · · · g〉c = |g〉⊗Nc .

2. Create a Bell pair: |g〉a → 1√
2

(|g〉a + |ns〉a)

The system: |ψ〉 = |g〉a|g〉⊗Nc + |ns〉a|g〉⊗Nc

3. Map the ancilla state to the cloud (π-pulse)

|ψ〉 → |g〉a
(∑

j σ
+
j |g〉⊗Nc

)
+ |ns〉a|g〉⊗Nc
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Distributed quantum network of clocks (cont’d)
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Distributed quantum network of clocks (cont’d)
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Distributed quantum network of clocks (cont’d)

Atomic cloud Atomic cloud

Node 1 Node 2
Bell pair

4. We would like to engineer a gate that does∑
j σ

+
j |g〉⊗Nc → |g〉⊗Nc and |g〉⊗Nc → |f 〉⊗Nc .

5. We then end up with the GHZ state:

|ψ〉 → |g〉a|g〉⊗Nc + |ns〉a|f 〉⊗Nc .

How do we engineer such a gate?
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Entanglement via asymmetric
Rydberg blockade
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Entanglement via Rydberg blockade - Rb

Conditions:

* ∆ss � Ωs∆ss � Ωs∆ss � Ωs (only single particle
excitations)

* ∆pp � ∆ss∆pp � ∆ss∆pp � ∆ss (|p〉 interact weakly)

* ∆sp � ∆pp∆sp � ∆pp∆sp � ∆pp (|s〉 and |p〉 interact
strongly) ∆sp/∆pp∆sp/∆pp∆sp/∆pp > 150

* ∆sp∆sp∆sp ∼ 1/R3 ∆pp∆pp∆pp ∼ 1/R6
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Procedure

* Prepare product state |ψ〉 = |00, . . . , 0〉

* Rabi frequency Ωs/2 = 〈s|H1|0〉 � ∆ssΩs/2 = 〈s|H1|0〉 � ∆ssΩs/2 = 〈s|H1|0〉 � ∆ss

* (1) Apply H1 for t1 = π/(2
√
N|Ωs |)

|ψ〉 = 1√
2

(
1√
N

∑N
j=1 |0, 0, s(j), . . . , 0〉+ |0, 0, . . . , 0〉

)
* Rabi frequency Ωp/2 = 〈p|H20|0〉 = 〈p|H21|1〉

* (2) Apply H2 = H20 + H21 for t2 = 2π∆0/Ω2
p (∆pp � Ω� ∆sp∆pp � Ω� ∆sp∆pp � Ω� ∆sp)

|ψ〉 =
1√
2

(
1√
N

N∑
j=1

|0, 0, s(j), . . . , 0〉+ |1, 1, . . . , 1〉

)

* (3) Apply −H1 for 2t1 to undo first step

|ψ〉 =
1√
2

(|0, 0, 0, . . . , 0〉+ |1, 1, . . . , 1〉)
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Side-note: trapping divalent
Rydberg atoms in optical lattices
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Magic trapping of divalent Rydberg atoms I

Optical potential can be expressed in terms of the dynamic polarizability:

U(z) = −F 2
0α(ω)/4

The Ry state dynamic polarizability has a position (Z) dependent and a
constant offset term:

αGS(Z , ω) = αg (ω) sin2(kZ )

αr (Z , ω) =− 1

ω2
〈nlm| cos(2kze)|nlm〉︸ ︷︷ ︸

αlsc
r (ω)

sin2(kZ )

+ 〈nlm| sin2(kze)|nlm〉 (offset)

When the Z -dependent contributions to the GS and Ry polarizabilities are
matched, the optical potentials seen in the ground state Ug (z) and the Rydberg
state Ur (z) only differ by a constant offset.
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Magic trapping of divalent Rydberg atoms II

For small n, 〈cos(2kze)〉 → 1 at a given k , resulting in αlsc
r (ω)→ αe . As n is

increased, the trapping potential minima switch back and forth between the
nodes and the anti-nodes of the lattice.
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Magic trapping of divalent Rydberg atoms III
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(Figure) αJ=0
5snl (λ)αJ=0
5snl (λ)αJ=0
5snl (λ) for the 5sns(1S0) (left panel) and 5snp(3P0) (right panel) Ry

states of Sr for various n-states plotted with the ground state 5s2(1S0) and
the upper clock state 5s5p(3P0) polarizabilities. Two special points at which
the 5s5p(3P0) polarizability matches those of the Ry states in the high-n limit
are marked by open circles. These universal magic wavelengths are at 596 nm
and 1362 nm.
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Back to the entanglement scheme
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Strontium

1S0

|0〉

1S0 |r〉s

1P1,M
|r ′〉p

1P0

|1〉

1 3
2 2

Figure : Generation of the
maximally entangled GHZ state in
Sr.

Conditions:

* Large 1S0 +1 S0 interaction to have
large blockade radius. (Van der
Waals interaction ∼C6/R

6)

* Strong |r〉 and |r ′〉 interaction.
(Dipole-dipole interaction ∼C3/R

3 )
∆sp � ∆pp∆sp � ∆pp∆sp � ∆pp

* All atoms not blockaded by
1S0 +1 P1 interaction must be able
to follow route 2: ∆pp � ∆ss∆pp � ∆ss∆pp � ∆ss

(Smaller C6(1P1 +1 P1))
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The conditions imply relationships between |r〉s and |r ′〉p

* The condition ∆ss � ∆pp∆ss � ∆pp∆ss � ∆pp implies:

C̃
(ss)
6 n11

R6
� C̃

(pp)
6 n11

R6

C̃
(ss)
6 � C̃

(pp)
6

* The second condition ∆sp � ∆pp∆sp � ∆pp∆sp � ∆pp provides a range for n:

C̃
(sp)
3 n4

R3
� C̃

(pp)
6 n11

R6
→ n�

(
C̃

(sp)
3

C̃
(pp)
6

R3

)1/7

R is the inter-atomic distance set by the experimental configuration.
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Practical set-up in a
one-dimensional optical lattice
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Experimental configuration

Figure : From DARPA website.
See Science 341, 6151 (2013)

* 1D trapping in an optical lattice

* Spatial extent of harmonic trap√
~/mω with N = 20 atoms per site

* fz = 80 KHz → ∆z = 27 nm

* fr = 450 Hz → ∆r = 504 nm
[Jun Ye Group, Nature, DOI

10.1038/nature12941]

* This gives a volume per atom inside a “pancake”: V =
π(∆r)2∆z

N
, and

a mean inter-atomic distance d ' (6V /π)1/3 = 127 nm.

* Loosening the trap increases d : e.g.
fz = 40 KHz and fr = 225 Hz yields d ' 180 nm.
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Experimental configuration - size considerations

* These size scales alone impose a constraint on n: 2n2 < d/2.
I fz = 80 KHz and fr = 450 Hz trap allows for n < 25.
I fz = 40 KHz and fr = 225 Hz trap allows for n < 30.
I fz = 20 KHz and fr = 112 Hz trap allows for n < 35.

* One possibility of increasing the inter-atomic distances is by going to 3D
optical lattice geometry. Leaving empty lattices between trapped single
atoms would allow us to adjust the inter-atomic separation.

* The main issue here is the high density of atoms restricting n too low. To
reduce the density in the cloud, we can try a MOT or an optical dipole
trap rather than an optical lattice.
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Diagram

R

kL

EL

σ+

θ

(a)

I II

R
kL

EL

σ+

(b)

I

II

1. (a) A σ+-polarized excitation laser whose wavevector kL is at an angle θ
with the interatomic axis R is driving the transition from 5s2(1S0) ground
state to the 5snp(1P1,MkL

=1) Rydberg state with ∆MkL = +1. Here MkL is
the projection of the total angular momentum onto the axis defined by kL,
which makes kL the quantization axis.

2. (b) The atoms are inside a pancake shaped atomic cloud in a 1D optical
lattice: θ = π/2 and kL is parallel to the wave vector k (along the x-axis).
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General scheme

1S0

|0〉

∣∣5sn′′s(1S0)
〉

∣∣5sn′s(1S0)
〉

∣∣5snp(1P1)
〉

3P0

|1〉

1

2

4

3 1S0

|0〉

∣∣5sn′′s(1S0)
〉

∣∣5sn′s(1S0)
〉

∣∣5snp(1P1)
〉

3P0

|1〉

1

2

4

3

C
(ss)
6 (strong)

C
(pp)
6 (weak)

C
(sp)
3 (strong)

Figure : Generation of the maximally entangled GHZ state in Sr.
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Choose states

1S0

|0〉

∣∣5s30s(1S0)
〉

∣∣5s18s(1S0)
〉

∣∣5s17p(1P1)
〉

3P0

|1〉

1

2

4

3 1S0

|0〉

∣∣5s30s(1S0)
〉

∣∣5s18s(1S0)
〉
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〉
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|1〉

1

2

4

3

C
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C
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6 (weak)

C
(sp)
3 (strong)

Figure : Choose n′′ as large high as possible as permitted by the atomic density of the
cloud (n′′ = 30). Then choose 5snp(1P1) such that it has the smallest possible C̃6

(n = 17). Having chosen 5snp(1P1), choose 5sn′s(1S0) so that it has the largest C̃3

(i.e. the largest overlap) with the 1P1 state (n′ = 18).
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Interaction strengths

* 5s30s(1S0) + 5s30s(1S0): ∆
(30)
ss = − 9.4

R6 n
11

* 5s17p(1P1,1x ) + 5s17p(1P1,1x ): ∆pp = − 0.24
R6 n

11

* 5s18s(1S0) + 5s17p(1P1,1x ): ∆sp = 0.09
R3 n

4

Following are the asymmetry conditions between the interaction strengths where
the interatomic separation R = d

* ∆sp � ∆pp: ∆sp/∆pp ' 1.1× 10−9 d3

I fz = 40 KHz and fr = 225 Hz gives d = 180 nm: ∆sp/∆pp ' 45

I fz = 20 KHz and fr = 112 Hz gives d = 254 nm and ∆sp/∆pp ' 127.

* Also, we need to have ∆ss and ∆sp to each define a blockade radius that is
at least as large as the size of the atom cloud. The bloackade raidus is
defined by ∆ss and ∆sp and the Ω of the excitation lasers.
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Long-range interactions between
the Rydberg atoms
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C̃6 coefficients for 1S0 + 1S0 and 1P1 + 1P1 interactions
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Figure : C̃6 coefficients for the
1S0 + 1S0 and 1P1 + 1P1

interactions in Sr as a
function of n. The solid and
empty points differ in the
energy denominators used to
calculate them: the solid
points use the numerical
energies obtained from a
model potential whereas the
empty points use
experimentally available
values. Negative C6 imply
attractive interactions. Black
points in top panel are from
JPB 45, 135004 (2012).

The blue star labels C̃6 ' 37
a.u. for n = 18.
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The asymmetry condition ∆sp � ∆pp∆sp � ∆pp∆sp � ∆pp

1. The condition ∆sp � ∆pp∆sp � ∆pp∆sp � ∆pp implies:

C̃
(sp)
3 n4

R3
� C̃

(pp)
6 n11

R6
→ n�

(
C̃

(sp)
3

C̃
(pp)
6

)1/7

R3/7 ≡ nmax

This shows how high up in n can we go and still abide by the second
condition ∆sp � ∆pp. Note that this is on top of the condition set by the
mean interatomic distance.

2. The ratio of the scaled CN coefficients
[
C̃

(sp)
3 /C̃

(pp)
6

]
has residual

dependence on n because the atom is not hydrogen. This makes the upper
bound for n suggested by the condition ∆sp � ∆pp∆sp � ∆pp∆sp � ∆pp depend on n itself.
However, this dependence is not strong because the upper limit on n is set
by the 7th root of this ratio and the ratio itself has weak residual
dependence on n.
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Residual n-dependence of
[
C̃

(sp)
3 /C̃

(pp)
6

]
and nmax
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Figure : Residual n-dependence of the ratio C̃
(sp)
3 /C̃

(pp)
6 (violet). The inset shows the

upper limit for n imposed by the asymmetry condition ∆sp � ∆pp.
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Quadrupole-Quadrupole interaction for 1P1 +1 P1
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Figure : R = 179 nm ' 3390 a.u.. For the experimental distance scales, the
quadrupole-quadrupole interaction is small compared to the van der Walls interaction
between the 1P1 states. This allows us to ignore the quadrupole term in the first
condition: C̃

(ss)
6 n11/R6 � C̃

(pp)
6 n11/R6 + C̃

(pp)
5 n8/R5 because

[C̃
(pp)
5 n8/R5]/[C̃

(pp)
6 n11/R6] ' 0.14 for n = 19 at R = 179 nm.
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Quadrupole-Quadrupole interaction for 1P1 +1 P1
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Figure : The point here is that neglecting the quadrupole-quadrupole interaction
between the 1P1 states is well justified for the length scales set by the experimental
setup. One has to place the atoms over a 1000 nm apart for the
quadrupole-quadrupole and the van der Waals interactions to have the same strength.
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Angular dependence of the long-range interactions
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Dipole-dipole interactions: VDD = C3/R
3

C3 = 1
3P2(cos θ)|〈1S0||D||1P1〉|2

Quadrupole-quadrupole interactions:
VQQ = C5/R

5

C5 = 1
5P4(cos θ)|〈1P1||D||1P1〉|2

van der Waals interactions: VvdW = C6/R
6

c1 + c2P2(cos θ) + c3P4(cos θ)

* 1P1 + 1P1 → 1S0 + 1S0 channel

* 1P1 + 1P1 → 1D2 + 1D2 channel

* 1P1 + 1P1 → 1S0 + 1D2 channel
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Motivation

Exploiting the series perturbation
in divalent atoms
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∆sp � ∆pp: Exploiting series perturbation in Sr

The condition ∆sp � ∆pp implies

∆sp

∆pp
=

(
C̃ sp
3

C̃ pp
6

)
d3

n7
� 1 .

If the usual n-scaling were to be true for all n of interest, we would want to
choose d as large as possible and n as low as possible to obtain the largest ratio
∆sp/∆pp. For n < 20 in Sr however, this scaling breaks down and we are
presented with new opportunities for even larger ratio ∆sp/∆pp than
otherwise possible with the hydrogenic n-scaling.

This is why we picked n = 17 for the 5snp(1P1,1x ) state earlier, because the

C̃
(pp)
6 coefficient for this state is abnormally small due to the highly perturbed

nature of the 5snd(1D2) intermediate states in the n < 20 region.

Next slide shows a plot of the ratio ∆sp/∆pp as a function of R and n in the
n-range of interest.
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Series perturbation in the 1P1 + 1P1 interactions

-10

-5

0

5

10

10 15 20 25 30 35 40 45 50

C
6
/n

11
(a
.u
.)

n

-20

-15

-10

-5

0

5

C
6
/n

11
(a
.u
.)

C̃6(1P1,1x + 1P1,1x )

C̃6(1P1,1x + 1P1,1x ) exp energies

C̃6(1S0 + 1S0) exp energies

C̃6(1S0 + 1S0) from Ref.[1]

C̃6(1S0 + 1S0)

Figure : 1P1 + 1P1 van der
Waals interaction in Sr has
intermediate states 1S0 + 1S0,
1D2 + 1D2 and 1S0 + 1D2. The
5snd(1D2) series is pertubed
by the 4d6s(1D2) between
n = 11− 17. The 4d2(1D2)
also pertubs 5s12d(1D2).
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The ratio ∆sp/∆pp
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Figure : The ratio ∆sp/∆pp as a function of R and n. The next slide shows constant R
cuts in this surface, which correspond to typical interatomic distances in optical
lattices, MOTs and ODTs.
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The ratio ∆sp/∆pp at specific d
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“Other” considerations ...

ITAMP Topical Lunch, Oct 24, 2014 GHZ states for atomic clocks



Dipole-Dipole interaction vs Radiative lifetime

* Energy shift due to dipole-dipole interaction (n = 20)∣∣∣∣∣ C̃ (sp)
3

R3

∣∣∣∣∣ =
0.18

R3
n4 ' 78 GHz

where R = 179 nm.

* Lifetime for the 5s15s(1S0) state of Sr is 745 ns.
This results in a natural line broadening of 10−4 GHz, which well resolves
the dipole-dipole shift.

* Lifetime for the 5s19p(1P1) state of Sr is 1,890 ns.
This results in a natural line broadening of 4× 10−5 GHz.

* Natural broadening also sets a limit for the blockade radius. For the
5s15s(1S0) state:

Rblockade =
(

2τ C̃
(sp)
3

)1/3
' 4.3 µm .
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Short-range interactions I

* Overall energy shift for all atoms due to isotropy. Only important at the
edges.

* We would like to evaluate the energy shift experienced by a Rydberg atom
due to a ground state atom in its immediate vicinity. The ground state
atom is assumed to be embedded in the Rydberg electron cloud.

∆E =

∫
ψ∗(r′)V (r)ψ(r′)d3r′

R

r
r′

The ground state atom is positioned at R with
respect to the center of the Rydberg atom and
the coordinate of the Rydberg electron is r′.
The position vector of the electron in the frame
of the ground state atom is r.

∆E =

∫
ψ∗(R + r)V (r)ψ(R + r)d3r
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Short-range interactions II

* ∆E sits on top of a constant background of the polarization potential from
the Sr atom, −αSr/(2r4) ≈ 200 Hz.

* An electron scattering off of an atom can be described using the Fermi
pseudo-potential:

V (r)ψns(R + r) ' 2π~2as
µ

δ(r)ψns(R) ,

which gives

∆E =
~2as
2µR2

|Pns(R)|2 .

* To compare these with the shifts due to dipole-dipole interactions,

|C (sp)
3 /R3| ∼ 0.65 GHz between 5s40s(1S0) and 5s39p(1P1) states of Sr

when the atoms are separated by 1 µm (the radius of n = 40 state is ∼0.17
µm).
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Short-range interaction potential
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Figure : ∆E for various 5sns(1S0) states of Sr. The horizontal dashed line marks 300
kHz. The spatial extent of the motional ground state is d ≈

√
〈z2〉 ' 13 nm.
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Short-range interactions between trapped atoms
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Figure : ∆E experienced by a Rydberg
atom separated from a ground state
atom by 813.4 nm in its neighboring
lattice site as a function of n. The red
impulses are calculated using ∆E and are
in the kHz regime. The inset shows the
absolute values of ∆E from the larger
panel plotted in logarithmic scale to
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Figure : Energy shift after thermal
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Inset shows the distribution of the
populations between the motional states
in the trap.
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Summary and outlook

* Fidelity of the entangling gate

* Creating Bell pairs over long distances (DLCZ scheme)

* Effect of ionization due to lattice lasers on the fidelity

* Repeat for Yb: appealing due to existence of telecom wavelength
transitions (λT ' 1.5 µm)
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