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Abstract
We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In
such a lattice, the S1

0 and P3
0 clock states and an additional Rydberg state experience identical

optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular,
we show that this triply magic trapping condition can be satisfied for Yb atom at optical
wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We
assess the quality of triple magic trapping conditions by estimating the probability of excitation
out of the motional ground state as a result of the excitations between the clock and the Rydberg
states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms
at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates,
due to the presence of Cooper minima in photoionization cross-sections.

Keywords: Rydberg atoms, magic trapping, optical lattices, divalent atoms, quantum information
processing
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1. Introduction

Recent advances in precision time keeping, quantum infor-
mation processing (QIP) and many-body simulation rely on
trapping cold atoms in optical lattices. In particular, harnessing
the rapid on-demand access to strong long-range interactions
between trapped Rydberg atoms holds an intriguing promise
for realizing scalable quantum computing [1–3] and creating
massive entanglement [4]. Current experimental efforts focus
on alkali-metal atoms and encode qubits into the ground state
hyperfine manifold. However, clocks using hyperfine structure
rely on microwave transitions and they have been far surpassed
by clocks that rely on optical transitions (see, e.g., micromagic
clocks in [5]). Here we explore some aspects of a different
scheme that utilizes divalent atoms, where we encode the qubit
states into the long-lived and well-protected clock states: the
ground S1

0 and the lowest-energy P3
0 state.

Working with divalent atoms in QIP provide several
advantages over alkali metal atoms. For example, Rydberg

series perturbation can be exploited to engineer van der Waals
interaction strengths between Ry states in a way that deviates
from its monotonic n-dependence in alkali metal atoms [6].
Furthermore, the trapping potential seen by divalent atoms in
an optical lattice results from Ry electron polarizability,
which sits on a background of ion core polarizability [7]. This
leads to ‘universal’ magic wavelengths (typically below
∼1000 nm), which do not depend on the principal quantum
number of the Ry state—something that does not exist for
alkali metals [8]. Recently, a quantum protocol using Yb to
realize an entangled network of atomic clocks has been pro-
posed [9], owing to its available telecom wavelength
transitions.

In all the QIP applications, a multitude of decoherence
mechanisms must be overcome [10]. One of such challenges
is the motional decoherence: if two atomic states e and g
experience different optical potentials, there is a lattice laser
intensity-dependent differential AC Stark shift between the
two levels and also there is motional heating during the
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population transfer between two internal states. The differ-
ence in optical potentials and thereby the motional deco-
herence can be fully eliminated in magic latices [11, 12],
which are operated at specially chosen ‘magic’ lattice laser
wavelengths (or frequencies wm). Since the optical potentials
are proportional to dynamic polarizability, a wm( ) the ‘magic’
condition reads a w a w=e m g m( ) ( ).

Namely the magic wavelength lattice idea is the key
behind the overwhelming success of optical lattice clocks [5].
In this case, the lattice wavelength is chosen so that the S1

0

and P3
0 clock states experience the same optical trapping

potential. Here we expand upon this idea and demonstrate that
magic trapping conditions can be attained simultaneously for
the two clock levels and an additional Ry level (figure 1 (a)).
We term this case where all three states (the clock and Ry
states), experience identical optical potentials as the ‘triple’
magic trapping. Notice that this phenomenon is unique to
divalent (and possibly other multi-valent) atoms.

Earlier attempts [13] failed to find ‘triple’ magic wave-
lengths for the alkali metal atoms. We demonstrate that such
magic wavelengths do exist for divalent atoms. One of the
reasons is the difference in relative size of the ion polariz-
ability between multivalent and mono-valent Rydberg atoms.
(Ion is the residual singly charged ion, e.g. for Sr, it is the Sr+

ion.). In alkali (mono-valent) atoms, the core electrons are
tightly bound with excitation wavelengths in the UV, while in
multi-valent atoms the core is ‘softer’ and highly polarizable
with much-longer excitation wavelengths. As both the core
and Ry electron polarizabilities contribute to the total atomic

polarizability, the core polarizability may play the dominant
role in optical trapping of multi-valent atoms.

Another relevant point worth emphasizing is the dynamic
polarizability of the Ry electron orbit. Indeed, despite
experimental evidence [14], the common wisdom has been
that electrons in Rydberg states see trapping potentials that
are essentially that of a free electron, and can only be trapped
at laser intensity minima. In [8], we demonstrated that this
approximation is dramatically invalidated when the size of the
Ry orbit is comparable to the lattice site extent. There is a
non-monotonic interplay between the lattice constant and the
physical size of the Rydberg state. We explained this inter-
play with a simple toy model and showed that the size of the
Rydberg orbit relative to the lattice constant is what deter-
mines whether a Rydberg atom is trapped at the intensity
minima or maxima. The Rydberg electron trapping potential
is determined by the laser-intensity averaged ‘landscaping’
polarizability. Based on these ideas, [7, 8] identified magic
trapping conditions for both alkali metal and alkaline Earth
atoms in infrared optical lattices. This paper may be con-
sidered as a natural extension of [7], as here we require magic
trapping of three levels.

As to the main results of this paper, we predict a triple
magic wavelength for Yb atom where the s6 S2 1

0( ) and
s p6 6 P3

0( ) clock states experience the same optical potential as
a sns6 S1

0( ) Rydberg state. A recent realization of Yb lattice
clock uses 759.35 ± 0.02 nm optical lattice, which is only
magic between these two clock states [15]. We also surveyed
other divalent atoms such as Ca, Mg, Hg and Sr but did not
find any triple magic wavelengths in the far red detuned
region. However, we do find that there are several triple
magic wavelengths in the UV region. These wavelengths
range from ∼220 to ∼400 nm, which can be generated using
table-top setups for frequency-tripled Ti:sapphire, Nd:YAG
and frequency-doubled dye lasers [16].

A common source of gate errors is due to the finite
lifetimes of Rydberg levels. This forces the gate operations to
be performed on time scales much shorter than the Rydberg
state decay lifetimes [10]. In addition to black-body-radiation-
stimulated and spontaneous decays, optical trapping opens
another loss channel: photoionization (PI) of Ry atom by the
trapping laser. To assess the feasibility of the triple magic
trapping at both long (Yb) and short (Ca, Mg, Hg and Sr)
wavelengths, we calculate the photoionization lifetimes using
semiclassical expressions [17, 18] and compare them to
the natural lifetimes [19–21]. The PI lifetime calculations
have been carried out for an effective intensity =Ieff

ò y = -I rd 10 W cmho
2 3 4 2∣ ∣ . This provides upper bounds for

the PI lifetimes. We find that there are several Cooper minima
in the wavelength ranges of interest and very long photo-
ionization lifetimes (longer than the natural lifetimes) can be
achieved at some of the triple magic wavelengths. For other
decoherence mechanisms, we refer the reader to [9], where
fidelities are estimated for several sources of operational
errors in an entangled network of Yb optical lattice clocks.

The paper is organized as follows: in section 2, we
describe the formalism. We then present results of numerical
calculations of magic wavelengths, photoionization cross

Figure 1. (a) Electronic and (b) motional energy levels relevant to
excitations between clock and Ry states of an atom trapped in an
optical lattice. In general, the clock ( ñg∣ and ñe∣ ) and Ry ( ñr∣ ) atoms
experience different optical potentials, U Zg,e ( ) and Ur(Z).
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sections and photoionization lifetimes for Yb in section 3.
Finally in section 4, we demonstrate that triple magic trapping
condition can be met in the UV for Ca, Mg, Hg and Sr. We
also give PI cross sections and PI lifetimes for these atoms in
the wavelength ranges of interest. Finally, the conclusions are
drawn in section 5. Atomic units are used throughout unless
specified otherwise.

2. Magic trapping divalent Rydberg atoms

We start by briefly reviewing the ideas behind the magic
trapping of Rydberg and ground state atoms in optical lattices.
Details and derivations can be found in [7, 8]. In the fol-
lowing, we assume a one-dimensional optical lattice made up
of two counter-propagating laser beams of frequency wL

whose wave vector p l=k 2L L is along the z-axis.
For a ground state atom, the trapping potential is

a w= -U Z Z F,g L L
2( ) ( ) , where a wZ,g L( ) is the ground state

dynamic polarizability and FL is the peak electric field
strength of the lattice laser [22]. Typically, the size of the
ground state atom is small compared to the size of the lattice
constant, so the Z-dependence can be factored out and the
dynamic polarizability can be written as

a w a w=Z k Z, sin . 1g L g L
2

L( ) ( ) ( ) ( )

In a Rydberg state, however, the size of the atom can be
comparable or larger than the lattice constant l 2L , and the
polarizability can be expressed as

a w
w

a w

= - á ñ

+ á ñ +

Z nlm k z nlm k Z

nlm k z nlm k Z

,
1

cos 2 sin

sin sin

2

r L
L
2 L e

2
L

2
L e ion L

2
L

( ) ∣ ( )∣ ( )

∣ ( )∣ ( ) ( )
( )

Note that the first term depends on the position of the atom in
the optical lattice the same way a ground state atom’s
polarizability does. The second term is independent of Z and
therefore does not play a role in trapping the atom in the
optical lattice. The final term is the contribution from the
residual ion seen by the Rydberg electron. We termed the Z-
dependent contribution from the first term in (2) the
landscaping polarizability as it modulates the free electron
polarizability in accordance with the intensity landscape of
the optical lattice [8]:

a w
w

º - á ñnlm k z nlm
1

cos 2 . 3r
lsc

L
L
2 L e( ) ∣ ( )∣ ( )

In a J = 0 divalent Rydberg state, where only one of the
valence electrons is excited, a wr

lsc
L( ) is added on top of the

polarizability of the residual ion a wion L( ) (e.g., Sr+), the
polarizability a wcore L( ) due to the contributions from core-
excited states of doubly ionized atoms (e.g., Sr2+), and a
small term a wcv L( ) arising from excitations to occupied
valence orbitals.

The magic trapping condition is when the atoms
experience the same optical trapping potential both
in the ground and the Rydberg states, therefore when

a w a w=g L r
lsc

L( ) ( ). In [8], we found that this condition is
satisfied for many laser wavelengths in the  l m1 10 mL
range for alkali Rydberg atoms with n 180. In cold atom
experiments which rely on trapping Rydberg atoms, working
at such long wavelengths provides several compelling
advantages: in quantum gate experiments, the magic trapping
scheme we describe renders turning off the trapping fields
unnecessary whenever a gate operation is to be performed.
Because the wavelengths are near the CO2 laser band, the
photon scattering and the ensuing motional heating is also
reduced when compared to conventional traps near low lying
resonances, alleviating an important source of decoherence.

Same principles also apply to divalent atoms with two
optically active electrons outside a closed shell, such as
group-II atoms (e.g., Mg, Ca, Sr) and group-II-like atoms
such as Yb, Hg, Cd, and Zn. In [7], we demonstrated that
magic wavelengths can be found between the ground and
singly excited Rydberg states of Sr in the same wavelength
range and developed a theoretical framework which takes into
account the total angular symmetry of the wavefunction due
to the existence of a spectator valence electron.

Here we are interested in the divalent case where there is
an additional level to the two clock states in the magic trap-
ping condition. We consider a Λ-type system which consists
of two low lying clock states and a single Rydberg state
(figure 1(a)). The clock states used in optical lattice clocks are
the S1 0 and P3

0 ground and excited states and we will consider
S1

0 Rydberg states although the same conditions apply
equally well for the P1 0 states as well [7].

The trapping potentials Ug(Z), Ue(Z) and Ur(Z)
(figure 1(b)) implicitly depend on time since the position Z
changes as the atom moves around inside the trap. To illus-
trate the idea behind magic trapping of a Λ-type system seen
in figure 1(a), we will briefly ignore this implicit time-
dependence and write the total wavefunction yñ∣ for the three
level system as

yñ = ñ + ñ + ñ

= ñ + ñ + ñ

- - -

- - - - -

g e r

g e r

e e e

e e e ,
4

U t U t U t

U t U U t U U t

i i i

i i i

g e r

g e g r g

∣ ∣ ∣ ∣
[∣ ∣ ∣ ]

( )
( ) ( )

where ñg∣ , ñe∣ , and ñr∣ refer to the ground ( S1 0), excited ( P3
0)

clock states and the Rydberg state. The phases due to the
trapping potential for each component are explicitly
spelled out.

Magic trapping between the ground ñg∣ and the excited ñe∣
states means that the atom experiences the same trapping
potential in both states, therefore - =U U 0e g . Therefore, in a
magic wavelength optical lattice for the clock states, the total
wave function (4) can be written as

yñ = ñ + ñ + ñ - Dg e r e , 5U ti r,g∣ ∣ ∣ ∣ ( )

where we defined D º -U U Ur,g r g and dropped the overall
phase factor - U texp i g( ) for brevity. The Ry atom will see
the same trapping potential as the other two clock states
when D =U 0r,g . This helps eliminate dephasing due to
the motion of the atom inside the optical lattice. We will
refer this as the ‘triple’ magic trapping condition. Since

a wD = -DU Fr,g L L
2( ) , it boils down to matching the clock

state polarizabilities with the total polarizability of the

3
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Rydberg state

a w a wD = D = 0, 6g,e L g,r L( ) ( ) ( )

where a a aD = -j k j k, . The condition a wD = 0g,e L( ) is
routinely exploited in optical lattice clocks and have become
an integral part of the experimental tool box [5]. This
condition in principle can be satisfied with arbitrary precision,
i.e. a wD g,e L( ) can be made negligibly small by varying wL.
This is because monotonically varying a wL( ) for the two
clock states inevitably cross at some lattice wavelength.

The situation is more complicated for the triple magic
trapping because three curves may not cross at exactly the
same point. Then one has to consider how small aD g,r can be
made when a wD = 0g,e L( ) . One also needs to establish a
measure as to how small aD g,r needs to be before (6) can be
considered practically satisfied. We assess this condition by
estimating the probability to transition out of the motional
ground state due to the optical potential shift DUr,g experi-
enced by the Rydberg atom. In the following, we proceed
with a derivation of an approximate expression for the
transition probability. We also estimate the combined effects
of DUr,g and the photon recoil energy ER and compare it to
the energy spacing between the motional states.

2.1. Motional excitation probability

We begin by estimating the probability Pmot to transition from
the ground state to an excited state of a harmonic oscillator
(HO) potential as a result of a π-pulse driving the ñ  ñg r∣ ∣
transition. We will approximate the optical potential with a
HO for the low-lying bound states.

We describe the time-evolution of the system in the
product basis of internal ( ñc∣ (clock, below we assume
ñ = ñc g∣ ∣ ) and ñr∣ (Rydberg)), and motional j ñn∣ states. The

Hamiltonian of the system in the rotating wave approximation
may be represented as

c= ñá + ñá +

+ ñá + ñá

H g r r g
P

M
U Z r r U Z g g

2
,

7

2

r g

(∣ ∣ ∣ ∣)

( )∣ ∣ ( )∣ ∣
( )

where c º W 2 and Ω is the Rabi frequency of the transition
to the Ry state. The harmonic trapping potentials are

w=U Z M Z
1

2
, 8r,g r,g

2 2( ) ( )

⎛
⎝⎜

⎞
⎠⎟w

p
l

a w=
M

F
2 2

, 9r,g
2

L

2

r,g L L
2( ) ( )

where =F IL
2

L is intensity in au and M is the atomic mass.
We will treat the difference between the potentials
= -W Z U Z U Zr g( ) ( ) ( ) as a perturbation:

w= DW Z M Z
1

2
, 10ho

2 2( ) ( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥w

p
l

aD = D
M

F
2 2

. 11
L

ho
2

2

L
2

r,g ( )

where a a a wD = w -r,g r L g L( ) ( ). With the ansatz

Y = Y ñ + Y ñr Z t Z t r Z t g, , , , , 12r g( ) ( )∣ ( )∣ ( )

we obtain the following equations for the motional states
Y Z t,r,g( )

c

c

Y = Y + + Y

+ Y

Y = Y + + Y





Z t Z t U Z Z t

W Z Z t

Z t Z t U Z Z t

i , , ,

, ,

i , , , .

P

M

P

M

r g 2 g r

r

g r 2 g g

2

2

{ }

{ }

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

Next, we introduce the complete set of motional states for the
ground state potential

⎧⎨⎩
⎫⎬⎭+ F ñ = F ñ

P

M
U Z E

2
. 13n n n

2

g ( ) ∣ ∣ ( )

For a harmonic potential, these are just the HO eigenstates.
We expand Y Z t,r ( ) and Y Z t,g( ) over this complete set:

å

å

Y = - F ñ

Y = - F ñ

Z t c t E t

Z t c t E t

, exp i ,

, exp i .
n

n n n

n
n n n

r
r

g
g

( ) ( ) ( )∣

( ) ( ) ( )∣

Substituting these into equation (13) we arrive at

å
c
c w

=
= + -



c t c t

c t c t c t t W

i ,

i exp i ,
n n

n n
k

k kn nk

g r

r g r

( ) ( )
( ) ( ) ( ) ( )

where = áF F ñW Wnk n k∣ ∣ .
Since the system starts from the ground internal state and

the ground motional eigenstate, we keep only c t0
g ( ). As a

result of the ñ  ñg r∣ ∣ excitation, the system will be promoted
to the desired p = 0 motional state as well as to the undesired
p = 2 state. We assume that the perturbation connects only to
one state F ñp∣ (for two harmonic potentials, the differenceW is
also harmonic, therefore only the p= 2 will be excited to the
leading order due to the HO selection rules):

c
c w

w

=
= + + -

= - +





c t c t

c t c t c t W c t t W

c t c t t W c t W

i ,

i exp i ,

i exp i .
p p p

p p p p pp

0
g

0
r

0
r

0
g

0
r

00
r

0 0

r
0
r

0 0
r

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

We can absorb W00 into the laser resonance frequency since
this is just the energy shift of the transition, and use
perturbation theory in W

c
c

w

=
»
» -





c t c t

c t c t

c t c t t W

i ,

i ,

i exp i .p p p

0
g

0
r

0
r

0
g

r
0
r

0 0

( ) ( )
( ) ( )
( ) ( ) ( )

Assuming that the system starts in the ground state, we obtain

c
c
c w

=
=
» -

c t t

c t t

c t t t W

cos ,

sin ,

i sin exp ip p p

0
g

0
r

r
0 0

( ) ( )
( ) ( )
( ) ( ) ( )

and

òt c w=
t

c W t t t
1

i
sin exp i d . 14p p p

r
0

0
0( ) ( ) ( ) ( )
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For a π pulse, t p= W, and

t p
c w

c w
= W =

+

-

w
c

c W
1

i

i e
, 15p p

p

p

r
0

0

2
0

2

pii 0
2

( ) ( )

or the probability to end up in the excited motional state

w
c w=P

W
G , 16p

p

p
p

mot 0

0

2

0( ( )) ( )

x
x x

x
=

+ -

-

p
x

G
1 2 sin

1
, 17

2
2

2 2

( )
( )

( )
( )

with x w= W 2 p0( ) . For consistency, we have to require that
P 1, and this limit is attained for x  1 ( wW D ho) and
x x»G 1 1 2( ) . This gives us

c
»P

W
, 18p

pmot 0
2

( )

which, for p = 2, results in

w
w

º »
D
W=P P

1

2
. 19p 2

mot
mot

ho
2

g

2

( )

Clearly the probability goes down with the difference
between the two harmonic potentials vanishing (i.e.,
approaching the magic conditions) or since wD <ho wg by
assumption that the two potentials are similar if wW D ho

(i.e. the duration of the pulse is smaller than the oscillation
period in the differential potential—as if the pulse were to
take a perfect snapshot of the motional ground state). In terms
of aD r,g, Rabi frequency Ω, lattice wavelength lL and the
intensity F2L, equation (19) can be recast into the more useful
form:

⎛
⎝⎜

⎞
⎠⎟

p
l

a w

a w
»

W

D
P

M
F

1

2

2 2
. 20mot 2

L

2
g,r
2

L

g g
L
2( )

( )
( )

2.2. Lamb−Dicke regime

Experiments normally work in the Lamb–Dicke regime where
the recoil energy is too small to induce transitions between the
motional bound states: wER ho. Here ER is the photon
recoil energy and who is the energy spacing between the
motional states:

⎛
⎝⎜

⎞
⎠⎟w

p
l

a
=

F

M

2 2
, 21

L
ho

g L
2 1 2

( )

⎛
⎝⎜

⎞
⎠⎟

p
l

= =E
k

M M2

1

2

2
. 22R

2

T

2

( )

The recoil can be from the clock transitions between the S1 0
and P3

0 states or the Ry transitions from the ground state.
Here lL and lT are the lattice laser and the transition
wavelengths and M is the mass of the atom. The transition
wavelength lT refers to lclock when it is between the clock
states ñg∣ and ñe∣ , and to lRy when between the ground and the
Ry states (figure 1(a)). In obtaining (21), we approximated the

optical potential with the HO for the low-lying bound states.
An alternative way of looking at the condition DW Ur,g is
to compare the combined shift due to ER and DUr,g to who.
We will do this estimate for the Yb atom below in the optical
region of the spectrum.

In the following sections, we show that the triple magic
trapping condition can be approximately satisfied for the Yb
atom in optical wavelengths and for various other divalent
systems in the UV region. We estimate Pmot in each case to
show that the discovered magic trapping conditions result in
transition probabilities below ∼1%.

3. Triple magic trapping of Yb

We start with a brief description of our calculations. The total
dynamic polarizability of a J = 0 divalent Ry atom is [7]

a w a w a w

a w a w

= +

+ +

= =

.
23n l n l

J
n l

J
;
0

L ion L
lsc, 0

L

core L cv L

g g r r r r
( ) ( ) ( )

( ) ( )
( )

Here a wcore L( ) is a contribution from the core-excited states
of the doubly ionized atoms (e.g. Yb2+). This term is almost
identical for both valence levels and is unimportant when
considering the differential contributions to the polarizability.
We also neglect a wcv L( ) which arises from excitations to
occupied valence orbitals as it is much smaller than a wcore L( ).
The dynamic polarizability of the Yb+ ion is given by

åa w
w

y y=
-

- -
á ñ

E E

E E
D , 24

j

s j

s j
s jion

6

6
2 2 6

2( )
( )

∣ ∣ ∣ ∣ ( )

where D is the electric dipole operator and Ej are the ionic
energy levels. We evaluate a wion ( ) using a high-accuracy
method [23]. The result is in good agreement with the static
polarizability from the literature [24] in the w  0 limit.

The Rydberg landscaping polarizabilities a wr
lsc

L( ) are
calculated using (3) where the Ry orbitals ñnlm∣ are obtained
by integrating the time-independent Schrödinger equation.
The ionic core potential for the Ry electron is modeled using
the potential

= - -
-

+
-

-V r
r

Z

r
b

1 1 e
e , 25a

ar
cr( ) ( ) ( )

where the constants a, b and c are determined by fitting the
eigenenergies of V(r) to the experimental energies for the
sns6 S1

0( ) Ry series of Yb [25, 26] using a simulated
annealing algorithm [27]. In the UV region, the dynamic
polarizabilities are mainly the ion core polarizabilities. This is
because the contribution from the Ry electron to the total
polarizability is very small at short wavelengths and the
details of the model potential does not matter [7]. In the long
wavelength region, e.g. where the Yb triple magic wavelength
lies, the dynamic polarizability oscillates and has nodes [8].
The positions of the nodes depend weakly on the details of the
core, which is modeled by the small-r part of the model
potential (25). The small shifts in the positions of the nodes
translate into small changes in the polarizabilities. The
differences are qualitative and small enough not to change
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the fact that there is a triple magic wavelength around
∼550 nm to within a few nm.

As described in section 2, we are looking for lattice
wavelengths for which the polarizabilities of the
ñ = ñg s6 S2 1

0∣ ∣ ( ) and ñ = ñe s p6 6 P3
0∣ ∣ ( ) clock states match the

polarizability of the sns6 S1
0( ) Ry state:

a w a w a w=  . 26snsg L e L 6
S

L
1

0( ) ( ) ( ) ( )( )

Two cases for which a wD = 0g,e L( ) is satisfied are
marked by empty circles in figure 2. At these magic points
l a =, 551.5 nm, 60 auL( ) ( ) and 759.37 nm, 186 au( )
[28], and the Yb atoms see the same trapping potential in both
clock states. The a wsns6

S
L

1
0 ( )( ) Ry state polarizabilities for

n = 120 (solid blue), 50 (dotted−dashed green) and 42
(dotted−dotted−dashed red) are also plotted in figure 2 along
with a wion L( ) for the Yb+ ion (dashed black curve). The
condition a w a wD D = 0g,r L g,e L( ) ( ) is best satisfied for
the n = 42 Ry state with a wD  1.5 aug,r L( ) .

The difference of a wD  1.5 aug,r L( ) between the
n = 42 Ry state and the clock state polarizabilities translate
into a probability of ~ -P 10mot

5 for excitation out of the
motional ground state. For this Ry state, Pmot is small enough
that the triple magic trapping condition is well suited for
applications involving atomic clocks and QIP alike. The
excitation probability estimated using equation (20) for var-
ious sns6 S1

0( ) Ry states of Yb using the 551.5 nm magic
wavelength is plotted in figure 3. It is clear that for all Ry
states with n 40, the excitation probability is at the ∼1%
level, which maybe too large for atomic clocks but is rea-
sonably small for QIP.

The same a wD  1.5 aug,r L( ) for the n = 42 Ry state
corresponds to wD »U 0.07r,g ho( ) . At 551.5 nm lattice
wavelength and 578 nm clock transition, w »E 0.08R ho( )

and the Lamb−Dicke condition is well satisfied. This means
that the total energy shift experienced by the n = 42 Ry state
is only 15% of the motional energy level spacing compared to
the 8% change experienced by the clock states due to photon
recoil alone. For reference, w »E 0.054R ho( ) for Sr atomic
clocks in a 814.427 nm magic wavelength optical lattice when
intensity is 104 W cm−2 [12]. This corresponds to relative
values of ER and who such that the energy transfer due to
photon recoil is only about 5% of the motional energy level
spacing. For our purposes, we can assume that ER can be
tolerated to be a higher fraction of who than 5%, since
quantum gates are not as susceptible to motional heating as
the atomic clocks.

The existence of the triple magic trapping condition
between the s6 S2 1

0( ), s p6 6 P3
0( ) clock states and the

s s6 42 S1
0( ) in figure 2 relies on the existence of a magic

trapping condition for the two clock states alone, whose
polarizability lies below that of the Yb+ ion. In fact, a triple
magic trapping condition, such as the one in figure 2, can
always be found if *a wg L( ) is below a wion L( ) at the magic
wavelength * *l p w= 2L L for which * *a w a w=g L e L( ) ( ).
Unfortunately, among the divalent atoms we surveyed (Ca,
Mg, Hg and Sr), we find that Yb is the only one for which this
condition can be satisfied in the optical wavelengths.

We also estimated the photoionization cross sections and
lifetimes in the s s6 42 S1

0( ) Rydberg state for lattice wave-
lengths up to 1 μm using analytical expressions obtained
through semiclassical approximations. We refer the reader to
[17] for a detailed derivation and to [18] for a description of
its implementation in terms of closed form analytical func-
tions. Since the photoionization cross sections involve bound-
continuum matrix elements, the quantum defects need to be
extrapolated into the continuum, especially in the wave-
lengths regions involving Cooper minima [29]. The cross
sections and the corresponding PI lifetimes are shown in
figure 4. There are several Cooper minima in the region

Figure 2. Yb triple magic trapping condition. The open circles
represent the magic trapping conditions for the s6 S2 1

0( ) and
s p6 6 P3

0( ) clock states. The dashed black curve is the dynamic
polarizability for the Yb+ ion onto which the Rydberg landscaping
polarizabilities are added to obtain the sns6 S1

0( ) landscaping
polarizabilities (solid blue, dot-dashed green, and dotted−dotted
−dashed red curves). For n = 42, the Rydberg state polarizability
goes through one of the magic points at 551.5 nm for the S1 0 and P3

0

clock states, which constitutes a triple magic trapping condition.

Figure 3. Excitation probability out of the motional ground state of
the optical lattice potential for the 551.5 nm magic wavelength seen
in figure 2 for pW = 2 1 MHz( ) and lattice laser intensity of 104

W cm−2. The motional excitation probability is ~ -10 5 when either
of the clock states is excited to the s s6 42 S1

0( ) Ry state. Probability
approaches to ∼1% in the limit  ¥n .
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l m< 1 mL , which correspond to the long-lived peaks in the
lower panel. At the 551.5 nm triple magic wavelength seen in
figure 2, the photoionization lifetime is ∼267 μs. The radia-
tive lifetime for the same state is ∼46 μs at 300 K [21]. This
suggests that the lifetime of the s s6 42 S1

0( ) Ry state trapped in
a triple magic optical lattice is limited by its radiative lifetime
in room temperature.

4. Triple magic trapping in the UV: Ca, Mg, Hg and Sr

Although we were able to find triple magic wavelengths for
Yb in the optical part of the spectrum, there are several cases
for other divalent atoms for which the condition aD » 0g,r

can only be satisfied in the UV region. In this section, we
survey Ca, Sr, Mg and Hg for wavelengths below 400 nm and
discuss some wavelengths where the condition aD » 0g,r is
approximately satisfied. We estimate excitation probabilities
Pmot and give semiclassical PI cross sections and lifetimes for
atom and compare to natural lifetimes when experimental data
is available.

The results we discuss below are based on data from the
polarizability plots seen in figure 5. The upper panel (A1, B1,

C1, and D1) for each atom in figure 5 shows the dynamic
polarizabilities for the lower ñ = ñg ns S2 1

0∣ ∣ ( ) and upper
ñ = ¢ ñe nsn p P3

0∣ ∣ ( ) clock states in the l 400 nmL region.
Open circles represent the best candidates for the triple magic
trapping conditions where the dynamic polarizabilities for the
clock states match, i.e. a wD = 0g,e L( ) . We label other points
where this condition is also satisfied (small black points),
however, these points are too close to resonances for us to
consider useful for trapping. The lower panels (A2, B2, C2,
and D2) plot these same points with the ionic polarizabilities
a wion L( ) (solid gray) and two Ry state polarizabilities for
which the triple magic trapping can be best attained (red
dotted and green dashed−dotted lines). Below we discuss
how well the triple magic trapping condition a wD » 0g,r L( )
is satisfied for each atom in figure 5.

4.1. Calcium

Most of the magic wavelengths for which aD = 0g,e from
panel (A1) can be treated as triple magic wavelengths to a
good degree. This is facilitated by the fact that a wion L( ) lies
above all the magic wavelengths from the panel (A1). The
smaller the n the closer the total Ry state polarizability to
a wion L( ). As n is decreased, Ry state polarizability becomes
more negative and sweeps out a region whose size is com-
parable to the spread of the magic points from the upper panel
(empty circles). The shortest two magic wavelengths seem
particularly promising as ´ -P 7 10mot

4 and ´ -3.6 10 4

can be achieved at these points for the s s4 26 S1
0( ) and

s s4 7 S1
0( ) states, respectively.

The probabilities for transitioning out of the motional
ground state (Pmot) are all below ∼10% for all the magic
wavelengths (empty points) in panel (A2) for the s s4 26 S1

0( )
Ry state. For this state, the largest one is P 0.13mot at the
longest magic wavelength at 341.4 nm. The estimates of Pmot
for the s s4 7 S1

0( ) state are less than 0.03 at most magic
wavelengths with the exception of the shortest and the longest
ones at which P 0.09mot and 0.07, respectively.

Long PI lifetimes can be achieved in this wavelength
range due to the small PI cross sections (see figure 6).
Although there are no Cooper minima for Ca in the lL range
we consider in figures 5 and 7 suggests that PI lifetimes above
100 μs can be achieved, which is much longer than the natural
lifetimes of the s s4 7 S1

0( ) (∼62 ns) and s s4 26 S1
0( ) (∼8 μs)

states [19].

4.2. Strontium

Sr is the most promising candidate for triple magic trapping in
all the atoms we surveyed in the UV wavelength region. All
eight wavelengths labeled with open circles in the upper panel
for Sr in figure 5 can potentially be considered a triple magic
wavelength depending on n of the Ry state sns5 S1

0( ). Most of
the a wD = 0g,e L( ) magic wavelengths from (B1) can be
made to be triple magic by an appropriate choice of n. For all
the magic wavelengths in panel (B2), P 0.01mot for both
s s5 10 S1

0( ) and s s5 25 S1
0( ) Ry states of Sr suggesting motional

excitation probabilities below 1%. The lowest Pmot are
´ -3.6 10 5 and ´ -9 10 5 for the s s5 10 S1

0( ) and s s5 25 S1
0( )

Figure 4. (Upper panel) Photoionization cross section σ for the
s s6 42 S1

0( ) Ry state of Yb. The cross section displays several Cooper
minima below 1 μm. (Lower panel) Logarithm of the photoioniza-
tion lifetime of the s s6 42 S1

0( ) Rydberg state for which the triple
magic trapping condition is satisfied when the trap intensity is 104

W cm−2. At the 551.5 nm triple magic wavelength, the photo-
ionization lifetime is ~ ´ -2.67 10 s4 .
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Figure 5. (Panels A1, B1, C1 and D1)Magic wavelengths for trapping Ca, Mg, Hg and Sr atoms in clock states in the UV region. The dashed
red curves are a wg L( ) for the S1 0 lower clock state and the solid blue curves are a we L( ) for the P3

0 upper clock state. The off-resonant magic
trapping conditions, where a wD = 0g,e L( ) , are labeled with open circles. Other points where a wD = 0g,e L( ) are also labeled with solid
black points although these are too close to resonances for us to consider magic wavelengths. (Panels A2, B2, C2 and D2) Open circles from
the upper panels with a wion L( ) (solid gray) and a w¢nsn s

S1
0 ( )( ) for two Ry states (dashed red and dotted−dashed green). All points for which

a wD = 0g,e L( ) lie below a wion L( ) and there are several wavelengths where the triple magic trapping condition can be satisfied.
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states at the shortest and the longest wavelengths,
respectively.

Due to the existence of Cooper minima around l » 200L

and 400 nm, long lived Ry states may be chosen by
appropriating n for l < 500 nmL . For example, Sr panel
of figure 6 suggests that there is ∼50 nm shift in the position

of the Cooper minima around l » 400 nmL between n = 10
and n = 30. Nevertheless, in the wavelength range of figure 5,
PI lifetimes are longer than 100 ms for 104 W cm−2

lattice laser intensity while the natural lifetimes for the
n = 10 and n = 25 states are ∼300 ns and ∼10 μs respec-
tively [20].

Figure 6. Photoionization cross sections for Ca, Mg, Hg and Sr out of nsn′s(1S0) Ry states for few ¢n . There are several Cooper minima in the
l m< 1 mL wavelength range which can help minimize ionization due to lattice lasers for optical trapping of Ry atoms in the UV region.

Figure 7. Logarithm of the photoionization lifetimes corresponding to the cross sections seen in figure 6. Long-lived peaks result from the
Cooper minima. The intensity of the lattice lasers is taken to be 104 W cm−2 which corresponds to a 10 μK deep trap for a 813 nm magic
wavelength lattice for Sr optical lattice clock [12].
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4.3. Magnesium

Unfortunately, Mg is not as promising a candidate as Ca or Sr
for triple magic trapping. For the four aD = 0g,e magic
wavelengths labeled in panel (C1), the smallest motional
excitation probability Pmot is 38% for the s s3 7 S1

0( ) Ry state
whereas it is 80% for the s s3 30 S1

0( ) state which occurs at the
lowest magic wavelength in panels (C1) and (C2). At longer
wavelengths shown, Pmot is larger for both Ry states. The PI
lifetimes do not offer much comfort either as the PI cross
sections are large in this wavelength region (figure 6). The PI
lifetimes vary between 1 and 100 μs whereas the natural
lifetime for the s s3 30 S1

0( ) state is ∼50 μs [20].

4.4. Mercury

Mercury is somewhat more amenable than Mg. The smallest
Pmot is 3% for the s s6 30 S1

0( ) state at 249.6 nm and the largest
Pmot is 21% for the s s6 10 S1

0( ) state at 342.8 nm. At the magic
wavelengths shown in panels (D1) and (D2), Pmot is mostly
around 10% level for both of these Ry states. The photo-
ionization lifetimes are all longer then 100 μs in this wave-
length range (figure 7) due to a Cooper minimum around
300 nm (figure 6).

5. Conclusions

We have surveyed a set of divalent atoms to assess the pos-
sibility of triple magic trapping cold Rydberg atoms in optical
lattices. This condition allows for trapping Λ-type atomic
systems such that all the differential shifts due to the atomic
motion inside the optical lattice vanish between S1 0 and P3

0
clock states together with that for a S1 0 Rydberg state. For
such a condition to be realized, there has to be magic wave-
lengths for the two clock states alone for which dynamic
polarizability at the magic wavelength is below that of the
ionic ground state. Since the ion polarizability and the Ry
landscaping polarizabilities simply add for a J = 0 Ry state,
this guarantees at least one Ry state with approximately the
same polarizability as the two clock states at this wavelength.

We inspected Ca, Mg, Sr, Hg and Yb atoms both in the
optical wavelengths as well as in the UV region. To assess the
quality of the triple magic trapping conditions in each case,
we estimated the excitation probabilities out of the motional
ground state of the optical trap resulting from the ñ  ñg r∣ ∣
excitation. In the optical wavelengths, we only found one
viable case for Yb where the triple magic trapping condition
can be efficiently satisfied for one Ry state. We also estimated
the PI cross section and lifetime of this state and concluded
that it is much longer than its natural lifetime.

We found that Sr and Ca are reasonably good candidates
in the UV region. There are several magic wavelength with
a wD = 0g,e L( ) for l 400 nmL , where the probability for

transitioning out of the motional ground state is reasonably
small, at 1% level. The PI lifetimes for Sr and Ca are also
favorable in this wavelength region as they are longer than
100 μs. This is substantially longer than the natural lifetimes
of the Ry states we consider.
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