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THE NUMERICAL SOLUTION OF PARABOLIC AND ELLIPTIC
DIFFERENTIAL EQUATIONS*

D. W. PEACEMAN anp H. H. RACHFORD, JR.

Introduction. Numerical approximations to solutions of the heat flow
equation in two space dimensions may be obtained by the stepwise solution
of an associated difference equation. Two types of difference equations
have previously been studied: (1) explicit difference equations, which are
simple to solve, but which require an uneconomically large number of
time steps of limited size, and (2) implicit difference equations, which do
not limit the time step but which require at each time step the solution
by iteration of large sets of simultaneous equations.

In this paper, an alternating-direction implicit procedure is presented
that requires the line-by-line solution of small sets of simultaneous equa-
tions that can be solved by a direct, non-iterative method. Analysis of the
procedure shows it to be stable for any size time step and to require much
less work than other methods that have been studied. As a practical test,
the new procedure was used to solve the heat flow equation with boundary
conditions for which the formal solution is known; the two solutions were
in good agreement.

In addition, the alternating-direction implicit method is applicable to the
iterative solution of two-dimensional steady-state problems. In a practical
test, rapid convergence for the solution of Laplace’s equation in a square
was obtained by using a suitable set of iteration parameters which were
easily calculated. An analysis is presented that shows the method to require
about (2 log N)/N as many calculations as the best previously known
iterative procedure for solving Laplace’s equation, where N2 is the number
of points for which the solution is computed.

In the first part of the paper, the numerical solution of unsteady-state
problems in two dimensions is discussed. For illustrative purposes, only
the simplest type of problem is considered, that of unsteady-state heat flow
in a square. In the second part of the paper, the numerical solution of
steady-state problems in two dimensions is discussed. Again, only the
simplest type problem is considered, namely, the solution of Laplace’s
equation in a square. In both parts of the paper, the analyses will be per-
formed for special boundary conditions. These analyses can, in many cases,
be extended in a straightforward manner to problems having different
boundary conditions.

* Received by the editors October 18, 1954.
t Presented to the American Mathematical Society, August 31, 1954.
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The theoretical aspects of the procedures discussed here are treated in
greater detail in a companion paper by Douglas [5].

SOLUTION OF THE HEAT FLOW EQUATION

The problem which is considered is that of unsteady-state heat flow in a
square, wherein the boundaries are maintained at zero temperature and
the square initially has a temperature of unity. The heat flow equation is
FT | o'T _ oT

1 - = 2=

W dx? + dy? at’

where T is the temperature, x and y are the distances from the center of the
square in the two perpendicular directions, and ¢ is the time. The boundary

conditions are

(x=1, T=0
@ 2= -1, T=
y=1, T =
Ly:—l, T=0

and the initial condition is
3) t=0, T=1.

Because of symmetry, only a quarter of the square need be considered, in
which case the boundary conditions become

z =0, g-=0

z =1, T =0.
@ aT

y =0, @=0.

y =1, T =0

Background. In this section, numerical methods already developed for
the solution of the heat flow equation are discussed in some detail in order
to provide background for the description of the new method, and also in
order to develop several equations that will be useful later.

Numerical procedures for the solution of equation (1) fall into two
categories, explicit and implicit. One explicit scheme for the solution uses
the following difference equation:
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Tijmar = Tijm _ Ticjn — 2Tijn + Tisriim
At (Az?)

(5)
Tijan — 2T jm + T j41m

(ay)*
where 7, j, and 7 are the indices in the z, y, and ¢ directions, respectively.
If we choose the mesh so that Az = Ay, and define

_(az)’ _ (ay)’
At At

+

(6) P

then the unknown temperatures at the » 4+ 1 time step may be solved for
explicitly by the equation

(7) Tz gl = Tl Jmn + [Tl—l g + Tt+l Jj.n + T J—1,n + Tz J+1n 4Ti,j.n]-

The stability of this scheme will be analyzed by a procedure very similar
to that used by O’Brien, Hyman, and Kaplan [4]. Assume that there exists
an error ¢, ;,, at each mesh point. It is easily shown for linear problems with
constant coefficients that these errors obey the same difference equation
that is used to obtain the numerical solution. Then, for the explicit scheme
described above,

1
8)  €ijar = €gm T+ ; leic1in + €it1m + €jcin + €ip1n — 4l

Because ¢ obeys both the difference equation (8) and the boundary condi-
tions (4), it may be expanded in a finite double series of orthogonal func-
tions that also satisfy both the difference equation (8) and the boundary
conditions, namely

N-1 N—-1
(9) €,in = p=0 q=0 Ap,q,n CcOs ﬂp T cos ﬁq Y

where 8, = 2p + 1)n/2, 8, = (2¢ + 1)7/2, and N is the number of in-
tervals in each of the z- and y-directions. Thus N = 1/Az = 1/Ay. Sub-
stituting equation (9) into equation (8) and examining each term in the
series separately shows that

(10) Apgnyr = Apgn [1 +% (2 cos B, Ar + 2 cos B, Ay — 4)] ,

or
Apgni _ 2 ﬁp 28q Ay)
(11) _Ap.q,n =1 P < + sin 5

For stability, this ratio must have an absolute value less than or equal to
unity for all p and ¢. This requires that
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(12) —1=1- % <sin2 ﬂ”;“’ + sin® ﬂ“2Ay> <1

The right-hand inequality is trivial, while the left-hand inequality is satis-
fied if

(13) p =4
The restriction on the size of the time step is, then,
(az)* _ 1
< = _—_
(14) At < 1 v

Thus, a total of 4N’t time steps are required to calculate the solution to
time ¢. Since 7 arithmetic operations are required for each of the N* points
at each time step, a total of 28 N*t operations is necessary for the complete
solution. For example, if it is desired to carry out the solution to time
¢t = 1.5, when T is everywhere less than 0.001, 420,000 operations are re-
quired for a ten-by-ten net; the situation rapidly becomes worse for a finer
mesh.

It has been shown [4] for the heat flow equation in one dimension that
the restriction on the size of A¢ arising from stability can be removed by
the use of an implicit procedure in which the second derivatives are ap-
proximated by second differences evaluated in terms of the unknown tem-
peratures, T.+1 . An extension of this idea to the problem in two dimensions
yields the following equation:

Ti,]',n+l - Ti,j,n _ Ti—l,j,n+1 - 2Ti,j,n+1 + Ti+l,j,n+l

At (Az)?

(15)
+ Ti,]'—l,n+1 - 2Ti,j,n+l + Ti.j+l,n+1
(ay)*
A derivation similar to the preceding one shows that
A n+1 1
(16) v.gntl .
Apan 1+ 4 sin? ByAz + sin? Ba4y
P 2 2

For all values of p, this ratio has an absolute value less than unity, so that
the procedure is stable for all size time steps.

Other stable implicit procedures similar to equation (15) might be pro-
posed. However, they lead to large sets of N ? linear simultaneous equations
with N? unknowns. In particular, the simultaneous equations that arise
from Equation (15) may be written as follows:

Tictimtr + Totrintr + Tijetngr + Tijgrnn

(17)
— 4+ oTijnpr = —pTijn O =n =N -—1).
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Solution of these equations by an elimination procedure is out of the
question, since the labor involved is roughly proportional to (N?)°. Fortu-
nately, iterative methods are quite successful for solving simultaneous
equations of this type. Frankel [3] has examined the rates of convergence
of several methods of iterating the Laplace difference equation (which may
be obtained from equation (17) by setting p = 0) and found the best method
to be the extrapolated Liebmann method (also known as the successive
overrelaxation method). The authors, using Frankel’s analysis of con-
vergence, examined several methods of iterating equation (17) and found
the extrapolated Liebmann method to be the best for these equations also.
This process may be written:

(m+1) ) +1) ) sty
Ti,’;,n-}-l = Tg?,n-l—l + a[TzS,—"l,j,nﬁ-l + T§7+"1,J',7'+1 + T‘S?_l'""'l
) )
+ T§Z+l,n+l - (4 + p)ngf.n+1 + PTi.J'.n]’

where the superscript, m, is the number of iteration stages already carried
out, and « is the relaxation factor, chosen for the maximum rate of con-
vergence. The analysis of convergence is the same as that given by Frankel
for the Laplace difference equation, except that the boundary conditions
(4) are not the same as those used by Frankel. If this difference in boundary
conditions, as well as the presence of p, is taken into account, the optimum
a is found to be the smaller root of

(18)

(19) W — G+ pa+1=0
where
2
™ ™
(20) u_20082w~2_4—]\72'

In each step of the iteration, the magnitude of every error component is
decreased at worst by a factor, K* which is the largest eigenvalue of the
difference operator (18). This eigenvalue is found to be

1) K* = (4 + p)a — 1.
Solving for « and K*, we obtain
an e — (8o + o° + 4" /N)'"
~Y 8 )
_ @+ 0B+ o + /N — (8 + )
3 .

If the iteration is continued until all errors are reduced by a factor of 107",
the number of cycles of iteration will be approximately

(24) 7 & v/logy (1/K*).

(22)

(23) K*~1
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In each iteration, 7N* arithmetic operations must be performed. Conse-
quently,
7oN*/logy (1/K*)

operations are required for each time step.

In any case where an implicit procedure is used, p will be considerably
less than 4, inasmuch as the explicit procedure may be used for p = 4. As
a minimum estimate of the number of iterations required, we may con-
sider the case of p = 1, with N sufficiently large that the term containing
it may be ignored. Then K* = 0.25, and 5 cycles of iteration are required
to reduce the errors by a factor of 10~°. For larger time steps, corresponding
to smaller values of p, more cycles of iteration are required.

Alternating-direction implicit method. As was shown in the preceding
section, when the implicit procedure is set up with both of the second
derivatives replaced by second differences evaluated in terms of the un-
known values of T, large sets of simultaneous equations are formed, which
can be solved, practically, only by iteration. If, however, only one of the
second derivatives, say 92T /dx?, is replaced by a second difference evalu-
ated in terms of the unknown values of T, while the other derivative,
3*T/dy?, is replaced by a second difference evaluated in terms of known
values of T, sets of simultaneous equations are formed that can be solved
easily without iteration. These equations are implicit in the z-direction.
If the procedure is then repeated for a second time step of equal size, with
the difference equations implicit in the y-direction, the overall procedure
for the two time steps is stable for any size time step.

Thus, two difference equations are used, one for the first time step, the
other for the second time step:

Ti,j,2n+l - Ti,j,2n _ Ti—l,j,2n+1 - 2Ti,]',2n+1 + Ti+1,j.2n+l

At (Ax)?
(25)
+ Ti,j—l,zn - 2Ti,j,2n + Ti.j,+1,2n
(ay)? ’
Tijonte — Tijontr _ Titiomir — 2T jon01 + Tivr,j0m11
At (Ax)?
(26)

+ Ti,j—l,2n+2 - 2T1',]'.2n+2 + Ti,j+l,2n+2

(ay)? )

These equations may be arranged in the following form, more suitable for
calculation.

Ti—l,j,2n+1 - (2 + P)Ti,j,2n+l + Ti+1,j,1n+1
= _Ti.j—1,2n + (2 - P)Ti.j,Zn - Ti,]'+1,2n )

@7)
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Ti,j—1,2n+2 - (2 + P)Ti.j,2n+2 + Ti,j+1,2n+2
= _Ti—l,j,2n+l + (2 - P)Ti,i,2n+l - Ti+1.j.2n+1 .

Use of equation (27) or (28) at each time step leads to N sets of N si-
multaneous equations of the form

r BoTo + CoT1 = Do ’
(29) {ArTr—l + BrTr + CrTr+l = Dr (1 é r é N — 2)7
L AN—ITN—2 + BN—ITN—I = DN—I .

The solution of these equations may be obtained in a straightforward
manner. Let

(28)

Wy = Bo,
(30)
wr = B, — A4,b,4 12rsN-1),
(31) b= & 0=<r=<N-2).
and
Jo = a;
(32)
gr=ll_fA_’g'—1 (1<rs<N-1.
Wy
The solution is
(33) Ty = gn—1
Tr=gr—brTr+1 (0§7‘§N—2).

Thus, w, b, and g are computed in order of increasing r, and T is computed
in order of decreasing r. Examples of the use of this method of solving equa-
tions (29) for the solution of one-dimensional flow problems, as well as a
proof, by matrix algebra, of equations (30) to (33) are given in a recent
article by the authors [1].

Stability. The stability of the procedure may be demonstrated by a
derivation similar to that leading to equation (10). The following equations
are obtained:

(34)  Ap,q2041[2 cos B,A7 — (24 p) = Ap,q.2n[_2 cos B,Ay + (2 — p)]
(35)  Ap.q2n42(2 cOs BoAY — (2 + p)] = Apg2nsil—2 cos BpAz + (2 — p)].

If equation (27) were used for every time step, the amplification factor for
each step would be
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Ap.gomt1 _P— 4 sin’ (.Bq Ay/2)
Apaon p — 4 sin? (8,Az/2)

For some values of p, ¢, and p, this ratio has an absolute value considerably
greater than unity. Hence, such a procedure is highly unstable. When
equations (27) and (28) are used alternately, however, the amplification
factor for the two-step procedure is

Apamir _p— 4 sin® (8,A7/2) _, p — 4 sin® (8,4y/2)
Ap.qg2n p + 4 sin® (8,A7/2) p + 4 sin® (B,4y/2) "

This ratio has an absolute value less than unity for all p, ¢, and p. Note that
it is necessary that p and, therefore, At, be the same for two time steps.

(36)

37)

Work requirement. For the N simultaneous equations resulting from the
use of equation (27) or (28) on a single line, the solution by equations (30)
to (33) require approximately 9N arithmetic operations. For each time
step, 9N? operations must be performed. We have seen that, for the extra-
polated Liebmann method, with p = 1, at least five iterations are neces-
sary, each requiring 7N? operations. Therefore, for p = 1, the best itera-
tive procedure known requires about four times as much work as the
alternating-direction method. For smaller values of p, the iterative pro-
cedure compares even more unfavorably, as will be seen in the numerical
example below. If p is kept constant, the number of operations is 9pN*.
However, it is not necessary that a constant time step be used [6].

The alternating direction implicit method requires a relatively small
increase in storage capacity over the extrapolated Liebmann method. The
latter method requires approximately N? registers of storage, whereas the
new method requires approximately N? + N registers.

Numerical example. The alternating-direction implicit method was
tested by carrying out a numerical solution of equations (1), (3) and (4)
on an I.B.M. Card Programmed Calculator, wired to perform eight-digit,
floating-decimal arithmetic. Because of storage limitations, fourteen in-
crements were used in each of the z- and y-directions. Thirty-six time steps
were used; small steps were used at the beginning and continually larger
steps were used as the solution progressed. It was necessary, of course,
that each size time step be used an even number of times. The schedule
followed is shown in Table 1. Included in the table is the value of p associ-
ated with each At, as well as the value of », the number of iterations that
would have been required for each time step if the extrapolated Liebmann
method had been used. The quantity » is calculated from equations (23)
and (24) using v = 3.

Results of the numerical calculation at even time steps were compared
with the exact solution of the problem at ¢ = 0.06, 0.1, 0.2, 0.4, 0.8, and
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1.5. The exact solution was calculated by the series given in Carslaw and
Jaeger [2]. The maximum error found was 0.0042 at ¢ = 0.1. It may be
seen that this error is due to truncation by repeating the calculation with
a smaller value of Af and comparing the errors. First, the exact solution at
{ = 0.06 was taken for the initial condition, and the solution at ¢{ = 0.1
was calculated in two steps using A¢ = 0.02. The maximum error was
0.0032. Then, with the same initial condition, the solution at ¢ = 0.1 was
calculated in ten steps, using At = 0.004. The maximum absolute error in
this case was only 0.0004.

It is possible to make an exact comparison between the labor involved
in using the alternating-direction implicit method for the solution of this
problem and that which would have been involved if either the explicit
method or the implicit method with iteration had been used. Since 36
time steps were used, the alternating-direction method required approxi-
mately (36)(9)(14)? & 63,500 arithmetic operations. The explicit procedure
would have required about 28(14)4(1.5) /&~ 1,610,000 operations, or about
25 times as much work. The implicit procedure, with extrapolated Lieb-
mann iteration, would have required for each of the 36 time steps the
number of iterations, n, shown in Table 1, or a total of 326 iterations. This
implicit procedure, then, would have required about (326)(7)(14)? =~
447,000 arithmetic operations, or about seven times as much work.

SOLUTION OF LAPLACE’S EQUATION

In this section, the numerical solution of steady-state heat flow and
diffusion problems in two dimensions is discussed. The typical problem
considered here is that of determining the temperature distribution in a
square in which two opposite faces are at zero temperature while the re-
maining two faces have a temperature of unity. Because of symmetry, it is

TasLe 1.—Time Steps Used in the Solution of the Heat Flow Problem.

At No. of times used I3 Nv=3
0.001 6 5.102 3
.002 4 2.551 3
.003 2 1.701 4
.005 4 1.020 5
.01 2 0.5102 7
.02 4 0.2551 9
.03 2 0.1701 11
.05 4 0.1020 13
.1 6 0.05102 17
.25 2 0.02041 21
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again sufficient to consider only one-quarter of the square. The differential
equation that applies is Laplace’s equation:

O'T | &°T
(38) oz T W 0
The boundary conditions are
aT
r = 0, ’a—:‘v— =0
z =1, T=0
(39) -
a
Yy = 0’ 'a‘y" =0
y=1, T =1.

Iteration by extrapolated Liebmann method. The conventional numerical
solution of Laplace’s equation consists in approximating it by the difference
equation

(40) Tiaj+ Tiv,j+ Tijor+ Tijpa — 4T:,;, =0

and iterating to the solution of the resulting simultaneous equations. As
pointed out above, Frankel [3] has examined the rates of convergence of
several methods of iterating the Laplace difference equation and found the
extrapolated Liebmann method to be the best. The iteration process may
be represented by equation (18) with p = 0, so that equations (22) and
(23) may be used to calculate the optimum relaxation factor and the cor-
responding rate of convergence. These are:

aN2 — /N
~

(42) K*~1— «/N.

(41)

The number of cycles of iteration required to reduce all errors by a factor
of 107" will be approximately

(43) n = 2.3uN/m.

Since 7N arithmetic operations must be performed in each iteration, a
total of approximately 5vN° operations is necessary.

Iteration by alternating-direction implicit method. The alternating-
direction implicit method may also be used to iterate to the solution of
Laplace’s equation. In this case, each stage of iteration may be regarded
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as a time step of an unsteady-state problem, while the starting values used
for the first iteration correspond to the initial condition. Equations (27)
and (28) are used for alternate stages of the iteration, with n representing
the number of pairs of stages already carried out and p serving as an
iteration parameter.

Convergence. We now investigate the convergence of this iteration
procedure in order to determine the optimum values of the iteration param-
eter, p. The rate of convergence is determined by studying how the errors
decay at successive stages of the iteration. Since the starting values should
satisfy the boundary conditions (39), the initial errors as well as the in-
termediate errors should satisfy the boundary conditions given by equa-
tion (4). Hence, these errors behave in precisely the same manner as the
errors present in the application of equations (27) and (28) to the solution
of the heat flow equation. Thus, the results obtained for the analysis of
stability may also be used for the analysis of convergence. The iteration
errors may be expanded in the double cosine series of equation (9), and the
amplification factor for each component, 4, ,, of the error is again given
by equation (37).

As may be seen from equation (37), the amplification factor may be
reduced to zero for each component by suitable choices of p. If we use

2ﬁpr_ . 2(2})""1)1!'
5 = 4 sin N

for each of the values of p: 0, 1,2, --- , N — 1, all of the components will
be reduced to zero on some one of the iterations.

It would appear that all of the components could be reduced to zero by
using only equation (27) with the values of p, given by equation (44); that
is, by iterating with the unknowns implicit in just the z-direction. How-
ever, equation (36) shows that such a process is highly unstable for all but
the pt** component. It is, therefore, necessary to iterate using both equa-
tions (27) and (28) alternately. This permits the successive reduction of
each component to zero without the simultaneous amplification of any of
the other components.

From these considerations, it follows that 2N iterations are required to
reduce all the error components to zero. However, it is not necessary to
take 2N iterations to obtain a satisfactory convergence. If N is sufficiently
large, an examination of the values of p, shows that, at the larger values of
p, the values of p, lie fairly close together. Consequently, an average p may
be used for a group of values of p. The amplification factors for the com-
ponents corresponding to the values of p falling within that group, while
not zero, are sufficiently small to reduce these components effectively.

(44) pp = 4 8in
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When N is not too large, it is possible to calculate all the values of p, by
equation (44) and to set up the groups by inspection. For large values of
N, however, it is desirable to have a formal procedure for setting up these
groups, and to examine how the number of groups increases as N increases.

Let p, be the lowest value of p in a particular group and p,.: be the
highest. It can be seen from equation (37) that every component, 4, ,
with p, £ p £ pupr0r py, £ ¢ £ Puy1, is acted upon at least once with an
amplification factor whose magnitude is less than or equal to the greater
of the two quantities

p — 4sin’ (2p. + 1)7/4N) p — 4sin’ (2pui1 + 1)7/4N)
p + 4 sin? (2p. + 1)x/4N) p + 4sin? 2puia + D7/4N) |’

where p is the iteration parameter associated with that group. It is thus
possible to group the p’s in such a way that every component is acted upon
at least once by an amplification factor whose magnitude is less than or
equal to some quantity, R. To have as few groups as possible, and therefore
the minimum number of iterations, p, , P.+1, and p for each group must
satisfy the following relationship:

p — 4 sin® ((2p, + 1)x/4N)
p + 4 sin? ((2p. + 1)7/4N)
_ _p— 480’ (@pun + Dr/aN) _ o
p + 4 sin® ((2putr + 1)7/4N) )
It is assumed, for purposes of setting up the groups, that p, may have non-
integral values. By eliminating p from equation (45), we have for each
group,

)

(45)

(46) S

.2(2pu+1+1)ﬂ'_ 1+R>2 -2(2pu+1)7r
TN "(1—R SN

For the group containing the highest values of p, py+1 = N — 1, while for
the group containing the lowest values, p, = 0. Then, if s is the total number
of groups,

.2 @N —1)r (14+RY ..«
47) sin v = (1 — R> sin” -
For large N,
7\ 1 — R\”
“ (&) ~(57)
(49) . logN +log (4/m) __ log N-

*“log [ + B/ —R)) ~ 2R
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TaBLE 2.—Iteration Parameters for N = 14.

? P Alp
0 '0.012576 0.40571
1 0.11223 .04546
2 0.30655 .01664
3 0.58579 .008710
4 0.93596 .005451
5 1.3394 .003809
6 1.7761 .00287
7 2.2239 .00229
8 2.6606 .00192
9 3.0642 .00166
10 3.4142 .00149
11 3.6035 .00138
12 3.8878 .00131
13 3.0874 .00128

Thus, the number of iterations increases approximately as the logarithm
of N, and the number of arithmetic operations increases as N log N, as
opposed to N* for the extrapolated Liebmann method.

Numerical example. Iteration of the Laplace difference equation by the
alternating-direction implicit method was tested by carrying out the
numerical solutions of equations (38) and (39) on the Card Programmed
Calculator. Again, fourteen increments on a side were used. Using N = 14,
the values of p, were calculated from equation (44) and are listed in Table
2. The corresponding At,, calculated from equation (6), are also listed.

For the calculation, five values of At were chosen by inspection: 0.0015
for p = 8 to 13; 0.003 for p = 4 to 7; 0.01 for p = 2, 3; 0.04546 for p =
1 and 040571 for p = 0. These values of At were used in order of increasing
magnitude. Each At was used twice, once with the unknowns implicit in
the x-direction, and once with the unknowns implicit in the y-direction.
The following relationship for T was used for the first trial:

(50) r=_1-%
2—z—y

In the ten stages of iteration, the solution converged to within 0.000014
of the exact solution of the difference equation. The initial guess had a
maximum error of about 0.039, so that the ten steps reduced the errors by
a factor of about 4 X 107",

The work involved in reducing the errors by a factor of 107, then, is
about (10)(9)(14)” arithmetic operations. In the more general case, we
may expect the number of iterations to be about
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log N _

l_O—g——].—‘]: = 3.8 ].Og N, ,
and the total work to be about (3.8 log N)(9)N* or 34N* log N operations.
The extrapolated Liebmann method requires 15N® operations, so that the
new method is better by a factor of about N/(2 log N) over the next best
iterative method.

Since this paper was submitted, several examples involving more com-
plex regions and less simple boundary conditions have been solved by means
of the alternating-direction implicit method [7]; however, no proofs of the
validity of the procedure in these cases have been obtained.
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