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High-order-harmonic generation from Rydberg states at fixed Keldysh parameter
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Because the commonly adopted viewpoint that the Keldysh parameter γ determines the dynamical regime in
strong field physics has long been demonstrated to be misleading, one can ask what happens as relevant physical
parameters, such as laser intensity and frequency, are varied while γ is kept fixed. We present results from our
one- and fully three-dimensional quantum simulations of high-order-harmonic generation (HHG) from various
bound states of hydrogen with n up to 40, where the laser intensities and the frequencies are scaled from those
for n = 1 in order to maintain a fixed Keldysh parameter γ < 1 for all n. We find that as we increase n while
keeping γ fixed, the position of the cutoff scales in a well-defined manner. Moreover, a secondary plateau forms
with a new cutoff, splitting the HHG plateau into two regions. The first of these subplateaus is composed of lower
harmonics, and has a higher yield than the second one. The latter extends up to the semiclassical Ip + 3.17Up

cutoff. We find that this structure is universal, and the HHG spectra look the same for all n � 10 when plotted
as a function of the scaled harmonic order. We investigate the n, l, and momentum distributions to elucidate the
physical mechanism leading to this universal structure.
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I. INTRODUCTION

High-order-harmonic generation (HHG) is a nonlinear
phenomenon in which atoms interacting with an intense laser
pulse emit photons whose frequencies are integer multiples
of the driving laser frequency. The emphatic motivation is
the generation of spatially and temporally coherent bursts
of attosecond pulses with high frequencies covering a range
from vacuum ultraviolet (VUV) to the soft x-ray region
[1]. Filtering the high-frequency part of a high-harmonic
spectrum allows the syntheses of ultrashort, coherent light
pulses with energies in the extreme ultraviolet (XUV) part
of the spectrum. This allows for tracing and controlling
electronic processes in atoms, as well as coupled vibrational
and electronic processes in molecules [2,3]. Some of the
most visible applications of ultrashort pulses of attosecond
duration involve resolving the electronic structure with high
degree of spatial and temporal resolution [4], controlling
the dynamics in the XUV-pumped excited molecules [5],
and exciting and probing inner-shell electron dynamics with
high resolution [6]. Time-resolved holography [7], imaging of
molecular orbitals [3], and attosecond streaking [8] are also
among the state-of-the-art applications of HHG.

High-order-harmonic generation is a process well described
within the semiclassical three-step model (ionization, propa-
gation, followed by recombination). The plateau region, where
consecutive harmonics have approximately the same intensity,
constitutes the main body of a high-harmonic spectrum. The
first step of the three-step model is the tunneling of the electron
through the Coulomb potential barrier suppressed by the laser
field. The second step is laser-driven propagation of the free
electron, and the third step is the rescattering of the electron
with its parent ion. During this last step, the electron can
recombine with its parent ion and liberate its excess energy
as a short wavelength harmonic photon. The three-step model
predicts that the highest kinetic energy that an electron gains

during its laser-driven excursion is given by 3.17Up, where
Up = F 2/(4ω2

0) is the quiver energy of the free electron in
the laser field, and F and ω0 are the laser field amplitude
and frequency. The highest harmonic frequency, ωc, that can
be generated within this model is qmaxω0 = |Eb| + 3.17Up,
where |Eb| is the binding energy of electron in the atom and
qmax is the order of the cut-off harmonic [9].

A crucial assumption in this physical picture is that the
electron tunnels into the continuum in the first step in a laser
field characterized by a small Keldysh parameter. This liberates
the electron with no excess kinetic energy, and its subsequent
excursion is driven by the classical laser field alone. Keldysh
parameter γ is commonly used to refer to one of the two
dominant ionization dynamics in strong fields: tunneling or
multiphoton regimes [10]. It is defined as the the time it takes
for the electron to tunnel the barrier in units of the laser period,
i.e., γ ∼ τ/T . Here τ is the tunneling time and T = 2π/ω0 is
the laser period. If the tunneling time is much smaller than
the laser period, one could expect that it is likely for the
electron to tunnel through the barrier. In contrast, if tunneling
time is much longer than the laser period, then the electron
does not have enough time to tunnel through the depressed
Coulomb barrier, and ionization can only occur through photon
absorption. The Keldysh parameter can be expressed as γ =
ω0

√
2 |Eb|/F [10].

Although the Keldysh parameter is widely used to refer
to the underlying dynamics in strong field ionization, there
are studies which suggest that it is an inadequate parameter
in making this assessment [11–13] when a large range of
laser frequencies is considered. Thus, it is natural to ask
what happens in the strong field ionization step of HHG as
a function of n, as relevant parameters, such as laser intensity
and frequency, are varied while γ is kept fixed. In this paper,
we investigate the HHG process from the ground and the
Rydberg states of a hydrogen atom using a one-dimensional
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s-wave model supported by fully three-dimensional quantum
simulations. The central idea is that in a hydrogen atom, both
the field strength F and the frequency ω0 scale in a particular
fashion with the principal quantum number n. Scaling the
field strength by 1/n4 and the frequency by 1/n3, it is evident
that γ = ω0

√
2 |Eb|/F remains unaffected as n is changed,

provided that both F and ω0 are scaled accordingly while n is
varied.

In the spirit of the Keldysh theory, going beyond the
ground state and starting from higher n as the initial state,
scaling F and ω0 to maintain a fixed value of γ should
keep the ionization step of the harmonic generation in the
same dynamical regime. We calculate HHG spectra starting
from the ground state of hydrogen using laser parameters for
which γ < 1 (tunneling), and then calculate the high-harmonic
spectra from increasingly larger n states, scaling F and ω0 from
the ground-state simulations and keep γ fixed. If the Keldysh
parameter is indeed adequate in referring to the ionization step
properly in HHG, one should expect that the physics of the
three-step process would remain unchanged, as the remainder
of the steps involve only classical propagation of the electron
in the continuum, and the final recombination step, which is
governed by the conservation of energy.

There are a number of studies devoted to HHG from
Rydberg atoms. The main motivation in these efforts is
primarily increasing the conversion efficiency in the harmonic
generation to obtain higher yields, which in turn would enable
the generation of more intense attosecond pulses. Hu et al.
[14] demonstrated that, by stabilization of the excited outer
electron of the Rydberg atom in an intense field, a highly
efficient harmonic spectrum could be generated from the more
strongly bound inner electrons. In another recent study, Zhai
et al. [15,16] proposed that an enhanced harmonic spectrum is
possible if the initial state is prepared as a superposition of the
ground and the first excited state. The idea behind this method
is that when coupled with the ground state, ionization can occur
out of the excited state, initiating the harmonic generation.
Since the excited state has lower ionization potential than the
ground state, this in principle can result in higher conversion
efficiency if the electron subsequently recombines into the
excited state. In this scenario, the high-harmonic plateau would
still cut off at the semiclassical limit Ip + 3.17Up with Ip

being that of the excited state. If, however, upon ionization out
of the excited state, the electron recombines into the ground
state, the cutoff can be pushed up to higher harmonics. The
same principle is also at play in numerous studies proposing
two-color driving schemes for HHG, with one frequency
component serving to excite the ground state up to an excited
level with a lower ionization potential, thus increasing the
ionization yield (see, for example, [17]).

In this paper, we report HHG spectra from ground and
various Rydberg states with n up to 40 for hydrogen atom,
where the laser intensity and the frequency are such that the
ionization step occurs predominantly in the tunneling regime.
Starting with γ = 0.755 at n = 1, we go up in n of the
initial state and scale F by 1/n4 and ω0 by 1/n3, keeping
γ constant. We discuss the underlying mechanism in terms
of field ionization and final n distributions after the laser
pulse. We find that the harmonic order of the cutoff predicted
by the semiclassical three-step model scales as 1/n when F

and ω0 are scaled as described above, and γ is kept fixed.
We repeat some of these model simulations by solving the
fully three-dimensional time-dependent Schrödinger equation
to investigate the effects which may arise due to angular
momenta in high-n manifolds. For select initial n states, we
look at momentum distributions of the ionized electrons, and
the wave function extending beyond the peak of the depressed
Coulomb potential at 1/

√
F . Unless otherwise stated, we use

atomic units throughout.

II. ONE-DIMENSIONAL CALCULATIONS

The time-dependent Schrödinger equation of an electron
interacting with the proton and the laser field F (t) in the s-wave
model in length gauge reads

i
∂ψ(r,t)

∂t
=

[
−1

2

d2

dr2
− 1

r
+ rF (t)

]
ψ(r,t). (1)

In our simulations, time runs from −tf to tf . This choice of
time range centers the carrier envelope of the laser at t = 0,
which simplifies its mathematical expression. We choose the
time dependence of the electric field F (t) to be

F (t) = F0 exp[−(4 ln 2)t2/τ 2] cos(ω0t), (2)

where F0 is the peak field strength, ω0 is the laser frequency,
and τ is the field duration at FWHM. Our one-dimensional
model is an s-wave model and is restricted to the half space r �
0 with a hard wall at r = 0. Having a hard wall at r = 0 when
there is no angular momentum can potentially be problematic,
because the electron can absorb energy from the hard wall
when using −1/r potential. However, we believe that this
model is adequate for the problem at hand, because we are
deep in the tunneling regime. In our calculations, the number
of photons required for ionization to occur through photon
absorption is ∼9 for n = 1, approaches 71 by n = 10, and stays
so for higher n. As a result, ionization takes place primarily in
the tunneling regime. If an extra photon is absorbed at the hard
wall, its effect would mostly concern the lowest harmonics,
which we are not interested in. In Sec. III, we show that the
results we obtain in this section are consistent with our findings
from fully three-dimensional calculations.

We consider cases in which the electron is initially prepared
in an ns state, where n ranges from 1 up to 40. Our pulse
duration is four cycles at FWHM for each case, and the
wavelength of the laser field is 800 nm for the ground state.
This gives a 2.7 fs optical cycle when the wavelength is 800 nm.
Thus, the total pulse duration τ for the ground state is ∼11 fs
and it scales as n3. For the 4s state, this results in a pulse
duration of ∼704 fs, while it amounts to ∼5.6 ps for the
8s state.

For the numerical solution of Eq. (1), we perform a series
of calculations to make sure that the mesh and box size of
the radial grid and the time step we use are fine enough so
that our results are converged to within a few percent. As
we go beyond the 1s state, we increase the radial box size
to accommodate the growing size of the initial state and the
interaction region. We propagate Eq. (1) for excited states
using a square-root mesh of the form j 2δr , where j is the
index of a radial grid point, δr = R/N2, R is the box size,
and N is the number of grid points. This type of grid is more
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efficient than using a uniform mesh in problems involving
Rydberg states [18], because it puts roughly the same number
of points between the successive nodes of a Rydberg state. For
the ground state, the box size is R = 750 a.u. and N = 800,
which gives δr = 0.0012 a.u. For excited states, the box size
grows ∼n2 and with a proper selection of δr , we make sure
that the dispersion relation kδr = 0.5 holds for each n state,
where k is the maximum electron momentum acquired from
the laser field: k = √

2Emax and Emax = 3.17Up.
The time propagation of the wave function is carried out

using an implicit scheme. For the temporal grid spacing δt ,
we use n3/180 of a Rydberg period, which is small enough to
give converged results. A smooth mask function which varies
from 1 to 0 starting from 2/3 of the way between the origin
and the box boundary is multiplied with the solution of Eq. (1)
at each time step to avoid spurious reflections from the box
boundaries.

The time-dependent solutions of Eq. (1) are obtained for
each initial ns state, which we then use to calculate the time-
dependent dipole acceleration, a(t) = 〈r̈〉(t):

a(t) = −〈ψ(r,t)|[H,[H,r]]|ψ(r,t)〉. (3)

Because the harmonic power spectrum is proportional to the
Fourier transform of the squared dipole acceleration, we report
|a(ω)|2 for harmonic spectra.

The initial wave function is normalized to unity, and the
time-dependent ionization probability is calculated as the
remaining norm inside the spatial box at a given time t ,

P (t) = 1 −
∫ R

0
|ψ(r,t)|2dr. (4)

In evaluation of the ionization probability, we propagate the
wave function long enough after the pulse is turned off until
P (t) converges to a time-independent value.

A. Results and discussion

In our one-dimensional simulations, we consider cases
where the atom is initially in an ns state with n up to 40.
The laser parameters are critically chosen so that the Keldysh
parameter is fixed at γ = 0.755 for each initial n, and the
scaled frequency of the laser field is ω0n

3 � 1, i.e., the electric
field has a slowly varying time dependence compared with
the Kepler period TK = 2πn3 of the Rydberg electron. For
example, for an 800 nm laser, an optical cycle is ∼18 times the
Kepler period for n = 1. The cut-off frequency ωc predicted
by the three-step model is ωc = |Eb| + 3.17Up [9], where
Up = F 2/4ω2

0 is the ponderomotive potential. Since |Eb|, F ,
and ω0 scale as n−2, n−4, and n−3, respectively, the cut-off
frequency ωc scales as n−2 and the harmonic order of the
cutoff qmax = ωc/ω0 scales as n for fixed γ .

Harmonic spectra from these simulations are seen in
Figs. 1(a)–1(d) as a function of the scaled harmonic order
q̃ = q/n, where q = ω/ω0 is the harmonic order. In Fig. 1(a),
the scaled laser intensity and the wavelength are 200/n8

TW/cm2 and 800n3 nm, which correspond to γ = 0.755.
The most prominent feature in these spectra is a clear double
plateau structure, exhibiting one plateau with a higher yield
and another following with lower yield. The second plateau
terminates at the usual semiclassical cutoff. These plateaus are

connected with a secondary cutoff, which converges to a fixed
scaled harmonic order q̃ = q/n as n becomes large.

We also note that the overall size of |a(ω)|2 drops signif-
icantly with increasing n in Fig. 1(a). For example, going
from n = 2 to n = 4, |a(ω)|2 drops about three orders of
magnitude, and from n = 4 to n = 8 it drops roughly four
orders of magnitude. The spectrum obtained for n = 8 is
about nine orders of magnitude lower than that for n = 1.
Beyond n = 8, the overall sizes of the spectra are too small and
plagued by numerical errors, which is why we stop at n = 8 in
panel (a). This is because the amplitude of the wave function
component contributing to the three-step process is too small to
yield a meaningful spectrum within our numerical precision.
In order to ensure sizable HHG spectra while climbing up
higher in n, we adopt the following procedure: We split the
Rydberg series into different groups of initial n states, which
are subject to different laser parameters but have the same
γ value within themselves. Within each group, we climb up
in n by scaling the laser parameters for the lowest n in the
group until |a(ω)|2 becomes too small. We then move onto
the next group of n states, increasing the laser intensity and
the frequency (γ ∝ ω/F ) for the lowest n in the group while
attaining the same γ as in the previous n groups. Scaling this
intensity and frequency, we continue to climb up in n until
again |a(ω)|2 becomes too small, at which point we terminate
the group and move onto the next.

Following this procedure, we are able to achieve HHG
spectra for states up to n = 40 in Fig. 1. The first n group
in panel (a) includes states between n = 1–8, and the laser
intensity and wavelength are 200/n8 TW/cm2 and 800n3 nm.
In panel (b) is the second group with n = 10–18 and the
laser parameters 300/n8 TW/cm2 and 652n3 nm. In panel (c),
n = 20–28 and the laser parameters are 400/n8 TW/cm2 and
566n3 nm, and finally in panel (d), n = 30–40 with intensity
and wavelength 470/n8 TW/cm2 and 522n3 nm. The peak
field strengths corresponding to these intensities are lower
than the critical field strengths for above-the-barrier ionization
for the states we consider, and the ionization predominantly
takes place in the tunneling regime.

The dipole accelerations at the two cut-off harmonics for
each n group seen in Figs. 1(a)–1(d) are plotted in the upper
two panels of Fig. 2. Here, we plot |a(ω)|2 as a function of n.
This figure points to a situation in which |a(ω)|2 drops with
increasing n within each group of n. Also, for the first few n

groups, |a(ω)|2 drops much faster compared to those involving
higher n. The reason for the decreasing |a(ω)|2 within each n

group in Fig. 2, can be understood by calculating the ionization
probabilities in each case, and examining how it changes as n

is varied.
Although completely ionized electrons do not contribute

to the HHG process, ionization and HHG are two competing
processes in the tunneling regime. As a result, decrease in one
alludes to decrease in the other. The ionization probabilities
from the ns states in Fig. 1 are plotted against their principal
quantum numbers in the lowest panel of Fig. 2. It is clear that
as we go beyond the ground state, the ionization probabilities
drop significantly as n is increased within each group. This
decrease is rather sharp for the first group and it levels off as we
go to successive groups involving higher n. The values of the
scaled frequencies 	 = ωn3 are the same in each n group, and

043417-3



E. A. BLEDA, I. YAVUZ, Z. ALTUN, AND T. TOPCU PHYSICAL REVIEW A 88, 043417 (2013)

FIG. 1. (Color online) High-harmonic spectrum from the Rydberg states of the H atom. The scaled laser field intensities and the wavelengths
are (a) 200/n8 TW/cm2 and 800n3 nm, (b) 300/n8 TW/cm2 and 652n3 nm, (c) 400/n8 TW/cm2 and 566n3 nm, and (d) 470/n8 TW/cm2 and
522n3 nm. The width of the laser pulse is four cycles at FWHM, and the selected parameters correspond to γ = 0.755 in each case. The scaled
harmonic order is q/n, where q = ω/ω0 is the harmonic order.

the laser parameters are chosen so as to make sure the condition
	 � 1 holds. This ensures that the ionization is not hindered
by processes such as dynamic localization. The reason behind
the decreasing ionization probabilities within each n group
can be understood using the quasiclassical formula [10] for
the tunneling ionization rate:


K ∝ (|Eb|F 2)
1/4

exp[−2(2|Eb|)3/2/3F ]. (5)

The laser field intensity and electron binding energy scale as
∼1/n4 and ∼1/n2. Thus, the exponent in the exponential factor
in 
K scales as 1/n, which results in decreasing ionization
probabilities within each n group when plotted as a function
of n in the lowest panel of Fig. 2. This behavior is reflected in
the corresponding HHG spectra in Fig. 1 and the upper panels
in Fig. 2 as diminishing of the HHG yield.

The decrease in the ionization probability also slows
down as as we successively move onto groups of higher
n, as indicated by the decreasing slopes of the ionization
probabilities in Fig. 2 between successive n groups. We find
that the ratio of the ionization probabilities between the 2s and
4s states in Fig. 2 is ∼39, whereas between the 12s and 14s

states it is ∼7, between 22s and 24s states ∼3, and between
32s and 34s states ∼2. This is an artifact of the scheme
we employ in which we divide up the Rydberg series into
successive groups of ns states to ensure sizable HHG spectra.
The rate of decrease in the ionization probability in each group

is determined by the slope of 
K , i.e., d
K/dn. This slope is
proportional to the laser intensity we pick for the lowest n

in each group in order to initiate it, and we scale it down by
1/n8 inside the group to keep γ fixed. However, although this
start-up intensity for each group is larger than what it would
have been if we were to continue up in n in the previous group,
it is still smaller than the initial intensity in the previous group.
This results in a decreased slope going through successive n

groups. Hence the decay rates for the ionization probability in
successive groups taper off, which is reflected in the two upper
panels in Fig. 2.

We also calculate the final n distributions for the atom after
the laser pulse to see the extent of n mixing which may have
occurred during its evolution in the laser field. This is done
by allowing the wave functions to evolve according to Eq. (1)
long enough after the laser pulse to attain a steady state. We
then project them onto the bound eigenstates of the atom to
determine the final probability distributions P (n) to find the
atom in a given bound state. The results are shown in Fig. 3. It
is evident from the figure that most of the wave function resides
in the initial state after the laser pulse, and that there is a small
amount of mixing into adjacent n states. The mixing is small
because only a small fraction of the total wave function takes
part in the HHG process. However, we cannot deduce from
our calculations what fraction of the wave function actually
participates in HHG, and hence what fraction of it spreads
to higher n. Because the HHG and ionization are competing
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FIG. 2. (Color online) Upper two panels: |a(ω)|2 at the first
and second cutoffs of the H atom as a function of n, obtained
from Figs. 1(a)–1(d). Within each n group, the |a(ω)|2 drops with
increasing n. (Lower panel) Ionization probabilities of the H atom as
a function of n mimic the behavior of |a(ω)|2 in the upper panels.
The field parameters are the same as in Figs. 1(a)–1(d).

processes in this regime, the ionization probabilities seen in
the bottom panel of Fig. 2 can be taken to be an indication of
the amplitude that goes into the HHG process. For example, at
n = 4, the ionization probability is at ∼10% level in Fig. 2 and
the largest amplitude after the laser pulse is in n = 5 in Fig. 3
at 10−5 level. This indicates that roughly a part in 106 of the
amplitude participating in the HHG process recombines into
higher n states. On the other hand, at n = 20, the ionization
probability is also at ∼10% level, but the spreading in n

is between ∼1% and ∼0.1% level, suggesting that between
roughly 1% and 10% of the wave function participating in the
HHG process gets spread over adjacent n. In the recombination
step of the HHG process, the probability for recombination
back into the initial state is the largest, chiefly because the
electron leaves the atom through tunneling with no excess
kinetic energy. It largely retains the character of the initial state
because its subsequent excursion in the laser field is classical
and mainly serves for the electron wave packet to acquire
kinetic energy before recombination. In the next section, we

discuss how this small spread helps shape the double plateau
structure seen in Fig. 1.

III. THREE-DIMENSIONAL CALCULATIONS

Three-dimensional quantum calculations were carried out
by solving the time-dependent Schrödinger equation as de-
scribed in Ref. [18]. For the sake of completeness, we
briefly outline the theoretical approach below. We decompose
the time-dependent wave function in spherical harmonics
Y�,m(θ,φ) as

�(�r,t) =
∑

�

f�(r,t)Y�,m(θ,φ) (6)

such that the time dependence is captured in the coefficient
f�(r,t). For each angular momenta, f�(r,t) is radially repre-
sented on a square-root mesh, which becomes a constant-phase
mesh at large distances. This is ideal for description of Rydberg
states on a radial grid since it places roughly the same number
of radial points between the nodes of high-n states. On a
square-root mesh, with a radial extent R over N points, the
radial coordinates of points are rj = j 2δr , where δr = R/N2.
We regularly perform convergence checks on the number of
angular momenta we need to include in our calculations as we
change relevant physical parameters, such as the laser intensity.
For example, δr = 4 × 10−4 a.u. in a R = 2000 a.u. box gave
us converged results for n = 4, whereas δr = 8 × 10−4 a.u. in
a R = 2800 a.u. box was sufficient at n = 8. We also found
that the number of angular momenta we needed to converge
the harmonic spectra was much larger than n − 1 for an initial
n state (e.g., ∼120 for the n = 8 state).

We split the total Hamiltonian into an atomic Hamilto-
nian plus the interaction Hamiltonian, such that H (r,l,t) =
HA(r,l) + HL(r,t) − E0. Note that we subtract the energy of
the initial state from the total Hamiltonian to reduce the phase
errors that accumulate over time. The atomic Hamiltonian HA

and the Hamiltonian describing the interaction of the atom
with the laser field in the length gauge are

HA(r,l) = −1

2

d2

dr2
− 1

r
+ l(l + 1)

2r2
, (7)

HL(r,t) = F (t)z cos(ωt). (8)

Contribution of each of these pieces to the time evolution
of the wave function is accounted through the lowest order
split operator technique. In this technique, each split piece is
propagated using an implicit scheme of order δt3. A detailed
account of the implicit method and the split operator technique
employed is given in Ref. [18]. The interaction Hamiltonian
F (t)r cos(θ ), couples � to � ± 1. The laser pulse envelope has
the same time dependence as in the one-dimensional s-wave
model calculations [Eq. (2)].

The harmonic spectrum is usually described as the squared
Fourier transform of the expectation value of the dipole
moment [dz(t) = 〈z〉(t)], dipole velocity [vz(t) = 〈ż〉(t)], or
the dipole acceleration [az(t) = 〈z̈〉(t)] (see [19], and ref-
erences therein). In our three-dimensional calculations, we
evaluate all three forms and compare them for different initial
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FIG. 3. (Color online) The probability distributions in n following the laser pulse for the initial states seen in Fig. 1. It is clear that the atom
essentially resides in its initial state after the pulse, which means the recombination step in the harmonic generation process occurs primarily
back to the initial state. The probability to find the atom in other nearby states is orders of magnitude smaller, and the probability distribution
becomes symmetrical about the initial state for n > 10 due to decreasing anharmonicity in the surrounding energy level structure.

n states:

dz(t) = 〈�(�r,t)|z|�(�r,t)〉, (9)

vz(t) = 〈�(�r,t)|ż|�(�r,t)〉, (10)

az(t) = 〈�(�r,t)|z̈|�(�r,t)〉, (11)

where ż = −i[H,z] and z̈ = −[H,[H,z]]. Reference [19]
found that the Fourier transforms dz(ω), vz(ω), and az(ω) are
in good agreement when the pulses are long and “weak” in
harmonic generation from the ground state of the H atom,
where “weak” refers to intensities below over-the-barrier
ionization limit. As we increase the initial n in our simulations
keeping the Keldysh parameter γ constant, we find that the
agreement between these three forms of harmonic spectra gets
better. This observation is in agreement with the findings in
Ref. [19], because to keep γ fixed, we scale the pulse duration
by ∼n3 and the peak laser field strength by ∼1/n4. Although
the energy of the initial state is also scaled by ∼1/n2 and the
pulse duration is the same in number of optical cycles, the
ionization probability drops within a given n series in Fig. 2.
This suggests that the pulse is effectively getting weaker as we
increase n for fixed γ . We report only the dipole acceleration
form |az(ω)|2 to refer to harmonic spectra, chiefly because it

is this form that is directly proportional to the emitted power,
i.e., S(ω) = 2|az(ω)|2/(3πc3).

Because high-order-harmonic generation and ionization are
competing processes in the physical regime we are interested
in, it is useful to investigate the momentum distribution of
the ionized part of the wave function to gain further insight
into the HHG process. In order to evaluate the momentum
distributions, we follow the same procedure outlined in
Ref. [20]. For the sake of completeness, we briefly describe
the method: In all simulations, the ionized part of the wave
function is removed from the box every time step during the
time propagation, in order to prevent unphysical reflections
from the radial box edge. This is done by multiplying the
wave function by a mask function m(r) at every time step,
where m(r) spans 1/3 of the radial box at the box edge. We
retrieve the removed part of the wave function by evaluating

�ψl(r,t
′) = [1 − m(r)] ψl(r,t

′) (12)

at every time step, and Fourier transform it to get the
momentum space wave function �φ(pρ,pz,t

′),

�φ(pρ,pz,t
′)

= 2
∑

l

(−i)lYl,m(θ,ϕ)
∫ ∞

0
jl(pr)�ψl(r,t

′)r2dr. (13)
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FIG. 4. (Color online) Dipole acceleration from direct solution
of the three-dimensional time-dependent Schrödinger equation when
the atom is initially prepared in 1s, 4s, and 8s states of the H atom. The
horizontal axis is the scaled harmonic order q̃ ≡ q/n = (ω/ω0)/n.
There are three universal cut-off points in the spectra marked as k1, k2,
and the usual Ip + 3.17Up limit. The double plateau structure mirrors
that of the one-dimensional spectra from Fig. 1, with a universal
secondary cutoff at q̃ = 23.45. The arrows marked as k1 and k2 are
discussed in the context of Fig. 7.

Here the momentum p = (p2
ρ + p2

z )1/2 is in cylindrical coor-
dinates and jl(pr) are the spherical Bessel functions. We then
time propagate �φ(pρ,pz,t

′) to a later final time t using the
semiclassical propagator

�φ(pρ,pz,t) = �φ(pρ,pz,t
′)e−iS, (14)

where S is the classical action. For the time-dependent laser
field F (t), action S is calculated numerically by integrating p2

z

along the laser polarization,

S = 1

2
p2

ρ(t − t ′) + 1

2

∫ t

t ′
p2

zdt ′′, (15)

pz =
∫ t

t ′
F (t ′′)dt ′′. (16)

We are assuming that the ionized electron is freely propagating
in the classical laser field in the absence of the Coulomb field
of its parent ion, and this method is numerically exact under
this assumption.

A. Results and discussion

The double plateau structure we see in the one-dimensional
spectra in Fig. 1 can also be observed from our three-
dimensional simulations. In Fig. 4, the squared dipole accel-
eration |a(ω)|2 is plotted for the initial states of 1s (black), 4s

(green), and 8s (blue) of hydrogen atom as a function of the
scaled harmonic order ω/(ω0n) ≡ q̃. In these calculations, we
adhere to γ = 0.75 as in the one-dimensional calculations, and
start at n = 1 with intensity 2 × 1014 W/cm2 and λ = 800 nm.
From this, we use the n scaling discussed in Sec. II to determine
the laser parameters for higher n states. Apart from the double
plateau structure, there is a decrease in the HHG yield with

increasing n in Fig. 4, similar to the one-dimensional case.
Again, this suggests that although γ is fixed for all three
initial states in Fig. 4, the atom sinks deeper into the tunneling
regime as n is increased, similar to what we have seen in the
one-dimensional case in Sec. II. The main difference in Fig. 4
is that the first plateau is not as flat as in the one-dimensional
calculations, as is often the case when comparing one- and
three-dimensional HHG spectra.

In order to clearly identify the first and the second cutoffs
seen in Fig. 1, we have smoothened the 4s and 8s spectra
by boxcar averaging to reveal their main structure (solid red
curves) in Fig. 4. The usual scaled cutoff from the semiclassical
three-step model is at qmax/n � 35 in all three spectra, and it
is independent of n. A secondary cutoff emerges at the same
scaled harmonic as in the one-dimensional case, which is
labeled as k2 in the 4s and the 8s spectra at q̃ � 23.45. It is
clear from Fig. 4 that just as the usual cutoff at qmax/n, k2 is
also universal beyond n > 4. This secondary cutoff separates
the two plateaus, first spanning lower frequencies below
k2, and the second spanning higher frequencies between k2

and qmax/n.
The mechanism behind the formation of the secondary

cutoff k2 can be understood in terms of the ionization and
the recombination steps of the semiclassical model. In the
first step, the electron tunnels out of the initial ns state into the
continuum, and has initially no kinetic energy. After excursion
in the laser field, it recombines with its parent ion. In this last
step, recombination occurs primarily back into the initial state.
This is because the electron was liberated into the continuum
with virtually no excess kinetic energy, and the electron wave
packet mainly retains its original character. When it returns
to its parent ion to recombine, the recombination probability
is highest for the bound state with which it overlaps the
most. As a result, recombination into the same initial state
is favored. This mechanism is associated with the usual
cutoff since its position depends on the ionization potential:
qmax = (Ip + 3.17Up)/ω0.

On the other hand, there is still a probability that the
electron can recombine to higher n states. This would result in
lower harmonics because less than Ip needs to be converted to
harmonics upon recombination. The cutoff for this mechanism
would be achieved when the electron recombines with zero
energy near the threshold (n → ∞). Because the maximum
kinetic energy a free electron can accumulate in the laser field
is 3.17Up, the lower harmonic plateau would cut off at 3.17Up.
For the laser parameters used in Fig. 4, this corresponds
to the scaled harmonic q̃ = 23.45, which is marked by the
red arrows labeled as k2 on the 4s and the 8s spectra. To
reiterate, the second plateau with higher harmonics includes
(1) trajectories which recombine to the initial state (n1 → n1)
after accumulating kinetic energy up to 3.17Up; (2) trajectories
which recombine to a higher but nearby n state (n1 → n2,
where n2 > n1) that have acquired kinetic energy up to
3.17Up; and (3) trajectories which recombine to much higher
n states (n1 → n2, where n2 � n1) resulting in the cutoff at
q̃ = 23.45.

The n and l distributions for the 4s and 8s states as a
function of time can be seen in Fig. 5. Notice that the laser
pulse is centered at t = 0 o.c. and has four cycles at FWHM for
both states. It is clear from the first column that the the atom
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FIG. 5. (Color online) n and l distributions for the probability to
find the atom in 4s and 8s states of H for the laser parameters used
in Fig. 4. All probabilities are plotted in log2 scale and the lowest
contour in the n distributions for both states is at the 10−10 level. The
half-cycles of the four-cycle laser pulse are clearly visible.

mostly stays in the initial state and only a small fraction of the
wave function contributes to the HHG process. To appreciate
how small, we note that the highest contour is at unity, and
the lowest contour for both the 4s and the 8s states are at
the ∼10−10 level. At the end of the pulse, there is a small
spread in n, which is skewed towards higher n in both cases.
This skew is expected since the energy separation between
the adjacent n manifolds drop as ∼1/n3, and therefore it is
easier to spread to the higher n manifolds than to lower n. The
small amplitude for this spread is a consequence of the fact
that we are not in the n-mixing regime. In the second column,
we see that the orbital angular momentum l also spreads to
higher l within the initial n manifold, and the small leakage
to higher angular momenta at the end of the pulse is a con-
sequence of the small probability for spreading to the higher
n manifolds.

The second step of the harmonic generation process
involving the free evolution of the electron in the laser field can
be understood on purely classical grounds. It was the classical

FIG. 6. (Color online) The momentum distribution for the ionized
part of the wave function integrated over time until after the laser
pulse when the atom is initially prepared in the 4s state. The total
momentum

√
p2

‖ + p2
⊥ corresponding to the maximum kinetic energy

that can be attained by a free electron in a laser field is marked by the
dot-dashed semicircle and labeled as 3.17Up . This is the limit that
determines the semiclassical cutoff at qmax = Ip + 3.17Up .

arguments that led to the 3.17Up limit for the maximum
kinetic energy attainable by a free electron. In the context
of this paper, performing such classical simulations can yield
no insight into how the excursion step of the HHG behaves
under the scaling scheme we have employed so far. This is
because the classical equations of motion perfectly scale under
the transformations r → rn2, t → tn3, ω → ω/n3, and E →
E/n2, where r is distance and t is time. On the other hand, it
is the lack of this perfect scaling property of the Schrödinger
equation that accounts for the differences between different
initial n states we have seen from our quantum simulations.
One way to examine the excursion step by itself in our
quantum simulations is to look at the momentum distribution
of the part of the wave function that contributes to the HHG
spectra.

To this end, we calculate the momentum map of the ionized
part of the wave function when the atom is initially prepared in
the 4s state. The reason we look at the ionized part of the wave
function is because harmonic generation and ionization are
competing processes. Therefore one would expect that they
should mirror each other in their behavior. Figure 6 shows
this momentum distribution obtained by Fourier transforming
the ionized part of the wave function, which is accumulated
over time until after the laser pulse [see Eq. (12) onward].
Since the problem has cylindrical symmetry, the horizontal
axis is labeled p‖ to refer to the momentum component parallel
to the laser polarization direction (same as pz). The vertical
axis p⊥ is the perpendicular component. We have also labeled
the 3.17Up limit for the maximum kinetic attainable, which
is along the dot-dashed semicircle. As expected, the total
momentum of the escaped electrons cut off at 3.17Up, and the
components which would have contributed to the two different
plateaus in Fig. 4 are visible close to the laser polarization
direction.

We also look at the momentum map of the wave function
inside our numerical box that falls beyond the peak of the
depressed Coulomb potential at r = 1/

√
F . Part of the wave

function in the region r < 1/
√

F is removed by multiplying it
with a smooth mask function before the Fourier transformation
step described in Sec. III. The results when the atom is
initially in the 4s and 8s states are seen in Fig. 7 at five
instances during the laser cycle at the peak of the pulse
(labeled A, B, C, D, and E). We have also labeled three
semicircles corresponding to three momenta

√
p2

‖ + p2
⊥ of

interest:
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(a)

(a)

(b)

(c)

(d)

(e)

(b)

(c)

(d)

(e)

FIG. 7. (Color online) Momentum distributions in the region r > 1/
√

F for the 4s (left column) and 8s (right column) states at five
instances during the laser cycle at the peak of the pulse (indicated on top). The region r > 1/

√
F is beyond the peak of the Coulomb potential

depressed by the strong laser field.

(1) the 3.17Up limit, also seen in Fig. 6;
(2) k1 corresponding to the kinetic energy Up; and
(3) k2 corresponding to the kinetic energy necessary to emit

the harmonic q̃ = 23.45 at the secondary cutoff in Fig. 4, if
the electron recombines into its initial 4s or 8s state upon
rescattering.

Almost all amplitude in Fig. 7 is contained within the k1

semicircle. The amplitude inside this semicircle contributes to
only very low harmonics, below the scaled harmonic labeled
as k1 in Fig. 4. This suggests that the spatial region r > 1/

√
F ,

which is traversed by long electron trajectories, contributes to
only very low harmonics below the first plateau in Fig. 4.
The annular region between the semicircles k1 and the k2

in Fig. 7 contributes to the first low harmonic plateau, and
the region between k2 and the semiclassical 3.17Up limit
contributes to the less intense second plateau in Fig. 4. Since

these regions in momentum space include very little amplitude
(note that the contours in Fig. 7 are in logarithmic scale), we
can conclude that the entire first and second plateaus result
from the short trajectories inside the region r < 1/

√
F . This

is in agreement with results reported in [21] for ground-state
atoms.

Expectedly, both momentum maps for the 4s and the
8s initial states show the same structures, the essential
difference being the number of nodes in the momentum
space wave functions inside the k1 semicircle, which is
roughly n. Incidentally, a rescattering event is visible on the
laser polarization axis at k2 in panel (d) of the 4s column,
giving rise to kinetic energy beyond the 3.17Up limit on the
left.

Contributions from the short and long electron trajectories
can be separated in the HHG spectra. To this end, we mask the
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FIG. 8. (Color online) Contributions to the HHG spectrum from
the small- and large-r regions when the atom is initially prepared in
the8s state. The region r > 1/

√
F is beyond the peak of the Coulomb

potential depressed by the strong laser field at ∼233 a.u., and 2n2 is
the classical turning point at 128 a.u. for n = 8. Both panels show
spectra generated using the entire wave function (black curve, same
as in Fig. 4), along with the spectra obtained in the r > rc (green)
and r < rc (blue) regions, where rc = 1/

√
F in the upper panel and

rc = 2n2 in the lower panel.

spatial components of the wave function in regions r < 1/
√

F

and r > 1/
√

F by multiplying it by a mask function which
smoothly transitions between these regions. The function
mt (r) masking the r < 1/

√
F region is the same function

used in generating the momentum distributions in Fig. 7,
and the function masking the r > 1/

√
F region is 1 − mt (r).

The resulting spectra for the 8s initial state can be seen in
the upper panel of Fig 8. For reference, the figure includes
the full spectrum for the 8s state from Fig. 4 (black) along
with the spectra obtained by masking the r < 1/

√
F (blue)

and r > 1/
√

F (green) regions. It is clear that the large-r
region only contributes to very low harmonics below the Up

limit marked as k1, whereas the small-r region accounts for
the entire range of harmonics. This is in agreement with
our discussion of the momentum distributions above, and
with previous work involving ground-state atoms [21]. The
bottom panel of Fig. 8 shows the spectra when the small-
and large-r regions are defined with respect to the classical
turning point. Because the turning point is more inland than
the peak of the Coulomb potential, the trajectories in the
r > 2n2 region account for a wider range of harmonics than the
ones inside r > 1/

√
F . This also shows that both plateaus are

formed by short trajectories which live well below the turning
point.

IV. CONCLUSIONS

We have presented results from one- and three-
dimensional time-dependent quantum calculations for higher-
order-harmonic generation from excited states of the H atom
for a fixed Keldysh parameter γ . Starting from the ground
state, we chose laser intensity and frequency such that we are
in the tunneling regime and ionization probability is well below
1%. We then scale the intensity by 1/n8 and the frequency by
1/n3 to keep γ fixed as we increase the principal quantum
number n of the initial state of the atom. Because γ is fixed,
the common wisdom is that the dynamical regime which
determines the essential physics should remain unchanged
in the HHG process as we go up in n of the initial state.
Our one-dimensional calculations demonstrate that this is
indeed the case, and although the emitted power (HHG yield)
drops as we climb up in n, the resulting harmonic spectra
display same universal features beyond n ∼ 10. The most
distinguished feature that develops when the atom is initially
prepared in a Rydberg state is the emergence of a secondary
plateau below the semiclassical cutoff qmax in the HHG plateau.
This secondary cutoff splits the harmonic plateau into two
regions: one spanning low harmonics and terminating with a
secondary cutoff, and a second plateau with lower yield and
higher harmonics terminating at the usual semiclassical cutoff
at qmax.

We have also found that the positions of these cutoff
harmonics scale as 1/n, and introduced the concept of “scaled
harmonic order,” q̃ = ω/(ω0n). When plotted as a function
of q̃, the harmonic spectra appear universal and, except for
the overall yields, the spectra for high n look essentially
identical.

We then carried out fully three-dimensional calculations
for three of the n states in the lowest n group in the one-
dimensional calculations to gain further insight into the scaling
properties we have seen in the one-dimensional calculations.
This also serves to investigate possible effects of having
angular momentum. We found the same features as in the
one-dimensional spectra, except that the yield from the first
plateau is skewed towards lower harmonics. We associate
this with spreading to higher n states during the tunnel
ionization and recombination steps by analyzing the n and
l distributions of the atom after the laser pulse. Momentum
distributions of the ionized electrons show features which
we can relate to the universal features seen in the HHG
spectra at high n. We further investigate the momentum
distribution of the wave function itself beyond the peak of
the depressed Coulomb potential at r = 1/

√
F at various

instances during the laser pulse. We find that this region
of space, traversed by the long trajectories, contributes only
to very low harmonics below the first plateau, which is in
agreement with previous results for HHG from ground-state
atoms [21]. We identify the first plateau in the HHG spectrum
with electrons with kinetic energy between: (1) Up and (2)
the kinetic energy if the electron emits the secondary cut-off
harmonic upon recombining to its initial state. The latter case
also occurs when the electron recombines to a much higher
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Rydberg state than the one it tunnels out after accumulating
a maximum possible kinetic energy of 3.17Up during its
excursion in the laser field. We further calculate contributions
to the HHG spectra due to the short and long trajectories for
the 8s initial state, which confirms our observation that the
region r > 1/

√
F contributes only to the very low harmonics

below the first plateau as reported in [21] for ground-state
atoms.
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