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It is commonly accepted in strong-laser physics community that dynamical regime of atomic
ionization is described by the Keldysh parameter, γ. Two distinct cases where γ > 1 and γ < 1 are
associated with ionization mechanisms that are predominantly in the tunneling and in multi-photon
regimes, respectively. We report on our fully three-dimensional ab initio quantum simulations of
ionization of hydrogen atoms in laser fields described in terms of the Keldysh parameter by solving
the corresponding time-dependent Schrödinger equation. We find that the meaning of the Keldysh
parameter changes when the laser frequency ω is changed, and demonstrate that it is useful in
determining the dynamical ionization regime only when coupled with the scaled laser frequency, Ω,
when a large range of laser frequencies and peak intensities are considered. The scaled frequency Ω
relates the laser frequency ω to the classical Kepler frequency ωK of the bound electron, and together
with the Keldysh parameter, the couple (γ,Ω) refers to a more realistic picture of the dynamical
ionization regime. We then refer to final momentum distributions of the ionized electrons at several
interesting points on the (γ,Ω) landscape, in order to infer whether tunneling or multi-photon
mechanism is dominant in these regions.

PACS numbers: 33.80.Rv, 05.45.-a, 05.45.Pq

I. INTRODUCTION

It has been ubiquitous in strong-laser physics that the
dynamical regime of atomic ionization, whether it be field
ionization or ionization through absorption of photons, is
associated with the Keldysh parameter, γ [1, 2]. In strong
lasers, the Coulomb field experienced by the atomic elec-
tron is depressed by the strong laser field. Depending on
the peak field strength of the laser field, this depression
can be substantial so as to result in a potential barrier os-
cillating at the laser frequency. Quantum mechanically,
there is non-vanishing probability that the electron can
tunnel through this barrier and escape into the contin-
uum. The likelihood of ionization in this manner is quan-
tified by the conditions in which the Keldysh parameter
is less than unity, γ < 1. This is commonly referred to
as the quasi-static limit, in which the depressed Coulomb
barrier is essentially static as seen by the electron. When
γ > 1, the atom ionizes by absorption of a number of
photons and the electron escapes through either direct
or indirect paths of ionization. However, γ > 1 does not
necessarily mean that there is no tunneling contribution
to the ionization, it is meant to imply when the tunnel
ionization is most likely.

Keldysh theory is strictly a theory of tunneling [1–3].
In Keldysh-like strong field theories, the classical action
is always complex regardless of γ, therefore its descrip-
tion is always contained within the tunneling picture. In
other words, ionization through a classically allowed path
does not occur in Keldysh-like theories. Therefore, the
statement that γ > 1 corresponds to multi-photon ion-
ization is not a statement made directly by the Keldysh
theory, but rather is a deduction which incorporates con-
servation of energy with the prediction that γ < 1 refers
to ionization dynamics governed predominantly by tun-

neling. It predicts the ionization rates when tunneling is
most likely, and when there is ionization with γ > 1, we
deduce that it must have followed an ionization path that
is not tunneling, i.e. one characterized by absorption of
photons. This is the step that incorporates the conserva-
tion of energy into the argument which ultimately decides
that the ionization happens through photon absorption.

Several shortcomings of the Keldysh-like theories is ev-
ident from the approximations made to the S-matrix el-
ements to allow for closed analytical expressions. For ex-
ample, theories such as SFA (strong field approximation)
involves no dynamics within the potential barrier, are not
gauge invariant, and the result usually depends on the
choice of the origin [4–7]. Less obvious shortcomings of
the applicability of the Keldysh parameter as an index for
assessing ionization regimes have also been demonstrated
and it has been shown to be unsuitable to describe laser-
induced ionization when a wide range of frequencies are
considered. Even when γ < 1, the laser frequency can be
so high as to allow for ultra-intense fields while keeping
the Keldysh parameter small. In such instances, γ → 0
limit converges to the fully relativistic conditions, where
the ponderomotive energy Up = F 2/4ω2 becomes com-
parable to the rest energy of the electron [8]. This inval-
idates the γ → 0 limit as the static field limit in which
ionization simply occurs through field ionization.

The reasoning behind the Keldysh parameter is the
following: In the standard Keldysh theory, the tunnel-
ing length is L ∼ Ip/F , where Ip and F are the ion-
ization potential and the peak electric field strength.
The velocity in the classically forbidden region, where
the combined Coulomb and the electric field potential
is larger than the total energy of the electron, can be
obtained using the WKB approximation to be roughly
v ∼

√
2Ip/2. Then the time it takes for the electron to
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tunnel through the depressed Coulomb potential is essen-
tially τ ∼ L/v =

√
2Ip/F . The ratio of this tunneling

time to the laser period is a measure of how fast the
barrier oscillates compared to the time it takes for the
electron to tunnel ionize, i.e. ωτ where ω is the laser
frequency. This ratio is γ = ω

√
2Ip/F and referred to as

the Keldysh parameter. It tells how static the oscillating
potential is as seen by the bound electron. The barrier
is effectively static with regard to the time it takes the
electron to tunnel ionize when γ < 1 (or T > τ), and
oscillating if γ > 1 (or T < τ). Trouble with exploiting
the Keldysh parameter for a wide range of frequencies
is immediately evident from this definition. Note that γ
is linearly proportional to ω whereas it is inversely pro-
portional to F . Therefore for a fixed laser wavelength,
one can vary the laser intensity in ways such that any
value for the Keldysh parameter can be attained. Con-
versely, fixing the field intensity, one can vary the wave-
length to get any γ desired. This point of view does not
respect conservation of energy and relevant time scales
other than the laser period, such as the classical orbital
period of the electron, and incorrect deductions can be
drawn for ionization dynamics for certain sets of param-
eters. For example, assuming a fixed γ ≪ 1, we can keep
choosing smaller and and smaller intensities for a laser
pulse, which may push the photon energy well into the
X-ray region. However, it would be unreasonable to ex-
pect that ionization by such a laser pulse would happen
through tunneling.

Experiments such as the ones in Refs. [9, 10] have
suggested that the ratio of the laser frequency ω to the
classical orbital frequency ωK of the bound electron, i.e.
ω/ωK , is more important in deducing the relevant phys-
ical mechanisms than the laser frequency ω alone. This
ratio is termed the scaled frequency and is given by
Ω = ωn3 for atoms. The reasoning behind this is evi-
dent if one considers that absorption of a photon by an
atomic electron is most likely when the electron is near
the nucleus. This happens once in every orbital period,
2π/ωK = 1/n3. When Ω < 1, effect of the field is similar
to that of a static field and the field strength required
for ionization scales like F ∼ 1/9n4. When Ω → 1, mul-
tiphoton transitions occur to higher n-states, which are
more easily ionized. In this regime, the ionization rate
scales ∼F 2N , whereN is the number of photons absorbed
during ionization. Ω > n/2 or ω > 1/2n2 is the single-
photon ionization limit after which photoionization oc-
curs through absorption of a single photon of higher fre-
quency, and the field strength needed for ionization drops
below 1/9n4.

For our purposes, it is more natural to express the
Keldysh parameter in terms of the scaled parameters, Ω
and F , rather than ω and F . Scaling the field strength
by 1/n4 and noting that ω = Ω/n3, we can rewrite the
Keldysh parameter in terms of the scaled frequency and

the electric field strength:

γ =
ω
√
2Ip

F
→

(Ω/n3)
√
1/n2

F/n4
=

Ω

F
(1)

where the scaled frequency is Ω = ωn3 ∼ ω/ωK, and the
Keldysh parameter no more bears any dependence on n.

We perform two sets of calculations for ionization of
a Hydrogen atom out of 1s, 2s, 8s and 16s states in
laser fields: one for the ionization rate and one for the
ionization probability for a large set of (γ,Ω) pairs. We
map out a landscape in (γ,Ω) space, which shows regions
bearing characteristics that can be attributed to either
tunneling or multiphoton features. Then calculating fi-
nal momentum distributions of the ionized electrons at a
select few points on our (γ,Ω) map for large and small
γ, we try to determine whether field or multiphoton ion-
ization is dominant in these regions.

II. NUMERICAL SIMULATIONS

In our rate calculations, we use a continuous wave (cw)
laser for the rate calculations and a laser pulse with finite
a width of 160 Rydberg periods at FWHM for the proba-
bility calculations. All of our simulations are based on ab
initio solutions of the three-dimensional time-dependent
Schrödinger equation in the length gauge. We represent
the total wave function on an (l, r) grid with a square-
root mesh in the r-direction. We use the lowest order
split operator technique for the time propagation of the
Schrödinger equation, where each split piece is propa-
gated using an O(δt3) implicit scheme. This is an exactly
unitary propagator, and enables us to use larger time
steps during the time propagation compared to those
needed for an explicit scheme. We use a mask function
starting from 2/3 of the box from the origin to remove the
ionized part of the wave function in order to avert spuri-
ous reflections from the box edge. A detailed account of
the O(δt3) implicit method and the split operator tech-
nique employed in this work can be seen in Ref. [11].
Below we only discuss the differences in our simulations
for the ionization rates and probabilities. The number of
the (γ,Ω) pairs we include in our simulations is 12,000,
which is achieved by massive parallelization over 12,000
(γ,Ω) pairs. We use atomic units throughout this paper
unless we explicitly indicate otherwise.

We employ a time-dependent approach reminiscent of
the time-dependent perturbation theory for our rate cal-
culations. We split the total hamiltonian of the system
into two pieces, such thatH(r, l, t) = HA(r, l)+HL(r, t)−
E0, where HA is the atomic hamiltonian and HL is the
hamiltonian describing the interaction of the atom with
the laser field in the length gauge:

HA(r, l) = −1

2

d2

dr2
− 1

r
+
l(l + 1)

2r2
(2)

HL(r, t) = F (t)z cos(ωt) (3)
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We subtract energy of the initial state E0 from the hamil-
tonian, and express the total wave function as a super-
position of the initial eigenstate of HA, and the time-
dependent correction, ψ(r, l, t) = ψ0(r, l) + ψ1(r, l, t), to
write the time-dependent Schrödinger equation as[

i
∂

∂t
−H(r, l, t)

]
ψ1(r, l, t) = HLψ0 (4)

with HL(r, t)ψ0(r, l) acting as a source term. Given that
ψ(t) = ψ0 + ψ1(t), and that ψ0 is an eigenstate of HA,
Eq. 4 is exact and allows for atomic processes of all or-
ders, such as absorption of multiple photons, as well as
single-photon processes and tunneling. The wave func-
tion ψ1(t) is zero everywhere before the laser pulse is
turned on, and it is analogous to the first order correc-
tion to the initial wave function in the time-dependent
perturbation theory, except that it now encodes all the
higher order contributions. As the pulse is turned on,
amplitude pours out of the initial state ψ0 into ψ1 at a
rate defined by the instantaneous field strength. After
the flat top of the laser envelope is reached we wait for
the time-dependent ionization flux JR(t) to settle down
at a steady state, which we then term as the ionization
rate. We evaluate the time-dependent flux JR(t) through
a spherical surface far away from the origin,

JR(t) =
∑
l

ψ∗
l,j

(
ψl,j+1 − ψl,j−1

rj+1 − rj−1

)
. (5)

Here R is the radius of the spherical surface through
which we evaluate the flux. It is also the distance from
the origin beyond which the mask function becomes ef-
fective. The time-dependent envelope for the laser pulse
turn on is

F (t) =

{
F0 exp[−(t/∆t)4] , t < 0

F0 , t ≥ 0
(6)

where we take ∆t to be 10 laser periods. We found that
faster turn on times result in ringing in the ionization
flux, which starts to increase the propagation time re-
quired for the ionization rate to settle down at a steady
state. On the other hand, slower turn on rates also re-
sult in higher computational overhead since it prolongs
the total propagation time of Eq. 4.
For our second set of simulations, we solve the time-

dependent Schrödinger equation to calculate ionization
probabilities: [

i
∂

∂t
−H(r, l, t)

]
ψ(r, l, t) = 0 (7)

with the initial wave function being a bound state of
Hydrogen with l = 0, i.e. 1s, 4s, and 8s. Note that the
operator acting onto ψ(r, l, t) on the left hand side is the
same operator as in Eq. 4. We evaluate the ionization
probability as the norm of the wave function which is
absorbed by the mask starting from 2/3 of the radial
box. The initial wave function is normalized to unity.

In all of our calculations, we regularly perform conver-
gence checks on several relevant numerical parameters,
such as number of grid points and angular momenta as
well as the size of the time steps taken during the prop-
agation of Eqns. 4 and 7. Since there are two inherent
time scales involved in the problem, i.e. the Rydberg
period τR of the electron and the laser period 2π/ω, we
pay special attention to our choice of the time step to
make sure that we have enough points in time within the
smallest time scale for a given (γ,Ω) pair. Specifically,
our choice of time step is

δt =

{
c1(2π/ω) , 2π/ω < τR
c2 τR , 2π/ω ≥ τR

(8)

where the factors c1 = 1/800 and c2 = 1/200 gave us con-
verged results for all (γ,Ω) pairs we considered. In choos-
ing the number of grid points N for a box of size R using
the square-root mesh in the r-direction, we make sure
that max(kδr) < 1 everywhere inside the box. Specifi-
cally, we monitor kδr where the mask function starts to
weigh in (rmask), and at the box edge. Given that we
use a square-root mesh where rj = j2R/N2 (0 ≤ j < N)
and a mask function starting from 1/3 of the way from
the box edge, for the maximum Ω we consider, we deduce
that

max(kδrM ) =
4R

N

(
Ωmax

3n3

)1/2

max(kδrR) =
2R

N

[
2Ωmax/n

3
]1/2

where k = (2E)1/2. The grid spacing δrM is at the
starting position of the mask function, and δrR is the
largest grid spacing at the end of the radial box. When
we take Emax to be the largest photon frequency in our
rate and probability calculations, we found that our re-
sults for the rate calculations were reasonably converged
when max(kδrR)∼0.76 for n = 1, ∼0.36 for n = 4, and
∼0.32 for n = 8. In the probability calculations, we had
max(kδrR) values smaller than these by a factor of 4
because we only go up to Ω = 4 in our probability cal-
culations, whereas Ω = 64 is the largest scaled frequency
in the rate calculations. The values for max(kδM) are
slightly lower than these since the grid spacing is smaller
at smaller r.

III. RESULTS AND DISCUSSION

A. Ionization Rate

Fig. 1 shows the steady flux of ionizing electrons, which
we interpret as ionization rate Γ, from initial states of 1s,
4s, 8s, and 16s for Hydrogen atom. The scaled frequency
Ω ranges from 0.05 to 64 and is plotted in log2 scale to
display such a wide range of frequencies in a single plot.
The vertical axes are the Keldysh parameter γ, which
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ranges from 0.1 a.u. to 2 a.u. and are plotted in linear
scale. The ionization rates Γ are plotted in log10 scale
and the contours decrease from yellow (bright) to blue
(darker). For a fixed Ω, the ionization rate ultimately in-
creases as γ decreases because γ is inversely proportional
to the field strength at fixed Ω. This is naturally expected
since regardless of the driving frequency, there is a high
enough field intensity which will result in ionization. For
the lowest Ω value in Fig. 1, F varies from 1.3 × 107 to
6.4 × 107 V/cm as γ varies from 2 to 0.1, which corre-
spond to intensities of ∼9× 1015 and ∼4× 1014 W/cm2.
On the other hand, for the highest Ω, the electric field
strength varies between 32 and 640 a.u. as γ varies from
top to bottom, which correspond to ultra high intensities
of ∼×1018 and ∼2 × 1019 W/cm2, respectively. These
four intensities correspond to the four limiting cases sit-
uated at the four corners of each (Ω, γ) map.

Photon energies in eV corresponding to the Ω values
are also indicated on the upper horizontal axis for refer-
ence. Note that even the minimum of these intensities is
fairly large for a Hydrogen atom. This stems from our
choice for the ranges of Ω and γ in Fig. 1, which is moti-
vated by the desire to straddle γ = 1 in an Ω range that
runs from Ω ≪ 1 to Ω ≫ 1. In reality, for most of the
(Ω, γ) pairs in Fig. 1, ionization would very quickly satu-
rate for a laser pulse that spans even a few orbital periods
of the electron. The important thing to remember here
is that Fig. 1 is a map for the ionization rate.

The fact that ionization would saturate immediately
for most of the maps in Fig. 1 is evident from the green
contours. The regions enclosed by these contours are
where the ionization rates are larger than the classical
frequency 1/(2πn3), i.e. where the ionization happens in
less than a classical orbital period of the electron. In this
case, rate as a concept ceases to be meaningful, and any
structure within these interior regions of the green curves
tell little about the dynamics leading to ionization since
the ionization probability will very quickly saturate.

Inarguably the most striking feature in these maps is
the ridge structure, which is most prominent and clear
in the (Ω, γ) map for 1s. Although they don’t appear
to be vertically straight due to the log2 scaling of the Ω
axis, each of these ridges are at a fixed Ω value. Also
note that there are more than one ridge in these fig-
ures. These correspond to the Ω that are the 1-, 2-, · · · ,
N -photon ionization thresholds, and can be written as
ΩN = ωN/ωK = n/(2N). Here ωN is the laser frequency
needed for N -photon ionization. The most prominent
ridges are those for N = 1 (single-photon ionization),
and the smaller subsequent ridges to its left are the ones
that correspond to multi-photon ionization with the ab-
sorption of 2 or more photons. In this multi-photon re-
gion Ω < n/2, and the ridges gradually disappear as
Ω → 0, when the oscillation of the laser field becomes
much slower than the classical orbital motion of the elec-
tron. In this case, the depressed Coulomb potential is
essentially static with regard to the tunneling time of
the electron, and ionization mainly occurs through field

ionization for all γ. For such values of Ω with γ > 0.5,
ionization rate drops drastically even well before γ = 1
is reached.

To the right side of the single-photon ionization ridge,
ionization rate drops with increasing photon energy for
a fixed γ. In this region of high scaled frequency, ioniza-
tion is suppressed, and higher and higher photon inten-
sities are required to maintain given rate of ionization if
Ω is increased. This suppression of ionization has been
observed in experiments for microwave ionization out of
high Rydberg states [12, 13]. It can be understood con-
sidering that the higher the Ω, the smaller fraction of
its orbit the electron will spend near the nucleus, where
it is most likely to absorb a photon, thus rendering the
electron less able to absorb photons. An alternative way
to think about this that the bigger Ω means a bigger en-
ergy change when a photon is absorbed. The bigger the
energy change in the final wavefunction, the smaller the
region of space is where the initial and final wavefunc-
tions have similar momenta k(r). Absorption of a single
photon is sufficient for ionization in this region. For in-
stance, at 1.7 keV for 1s, γ needs to be less than 0.3 for
Ω > 16 in order to maintain the same ionization rate for
Ω ∼ 4. Clearly, we cannot say that ionization at these
high Ω occurs through field ionization any more, and the
statement that γ < 1 refers to tunneling is misleading.

On top of the (γ,Ω) maps in Fig. 1, we plot lines along
which the peak electric field strength is a constant. The
solid, dashed, and dotted lines correspond to F = 0.05,
0.1, and 0.5 a.u., and such slices in Fig. 1 can be taken to
extract the energy spectrum at a fixed intensity. In the
left column of Fig. 2, we take the spectroscopic point of
view for photoionization, and depict ionization rates as a
function of Ω for three individual field strengths for ini-
tial states of 1s, 4s, and 8s corresponding to the constant
F slices seen in the (γ,Ω) maps of Fig. 1. The classical
frequency 1/2πn3 is indicated for each initial state by the
horizontal dashed line (green contours in 1). Portions
of the curves that lie above this line correspond to cases
in which ionization occurs in less than a classical period,
and should not be interpreted as ionization rates. The
rates are plotted in log10 scale as in Fig. 1, although the
Ω axis is now in linear scale. F = 0.5, 0.1, and 0.05
a.u. from top to bottom in each panel on the left, and as
expected, the overall magnitudes of the ionization rates
drop as the peak field strength decreases. This is due to
the well known power law dependence of the rate on the
intensity for an N -photon absorption process, Γ ∼ F 2N

(see [2] and references therein). Although the intensi-
ties seen in this column is somewhat high for hydrogen,
ionization with two distinct characteristics can be easily
identified in the low and and the high frequency regions.
In the low Ω part of the spectra, the rates drop much
faster with the decreasing intensity when compared with
the higher frequency region. This is a manifestation of
the Ω independent decay in the tunneling regime, where
the decay rate decreases exponentially with the inverse of
the field strength, i.e. Γ ∼ exp[−2(2Ip)

3/2/(3F )] in the
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static field limit [2]. On the other hand, before the sharp
drop in the rate is reached for small Ω, there is a rel-
atively flat region which shows little dependence on the
scaled frequency. This Ω-independent part of the spectra
is the tunneling region, in which Γ obeys the exponential
decay of the ionization rate.

In contrast, the rate displays structures in the higher
frequency region, which correspond to the multiphoton
resonance structure of the atom. The Rydberg-sequence
structure of the multiphoton peaks mark the indirect
paths of excitation followed by multiphoton ionization
from an excited state. The positions of these peaks ex-
perience AC stark shifts from the laser field, and the
position of Ω1 is closest to n/2 for the lowest F . This
regime persists until the higher Ω region is reached be-
yond the single-photon ionization limits Ω1 = 0.5, 2, and
4 for n = 1, 4, and 8. The ionization in this region
is mainly described by the Fermi’s golden rule and the
drop in the rate in this case is due to the power law de-
pendence of Γ on the intensity. An important caveat here
is that when we refer to multi-photon ionization, we are
not making any distinction between direct and indirect
paths of ionization through absorption of many photons.

After the multiphoton structure is diminished beyond
the single-photon ionization limit, the ionization is again
suppressed, as discussed in [12, 13] for Rydberg atoms in
microwaves. This suppression is argued to be a quantum
mechanical interference effect, and the field needed for
ionization tends to be n-independent. Such a trend can
also be seen in the left column in Fig. 2, as the region of
high Ω is penetrated beyond Ω1, the order of magnitude
rates qualitatively start agreeing for n = 4 and 8.

Assuming the strong-field physics point of view, right
hand column of Fig. 2 shows the ionization rates out of
the same set of initial states of Hydrogen as a function of
the scaled electric field strength Fn4 for various scaled
frequencies. These plots correspond to constant verti-
cal Ω slices in Fig. 1, and they are plotted as a function
of the field strength Ω/γ rather than the Keldysh pa-
rameter. Notice that for the low values of Ω, there is
a flat plateau region after Fn4 & 0.2, suggesting that
ionization rate drops like 1/n4 in this region. This is a
signature of the static field ionization regime, meaning
that the distinction between ionization rates for differ-
ent Ω disappears in this region. This is especially so for
the higher n. The higher the principal quantum num-
ber the more independent is the rate from the scaled
frequency Ω. The rate at the single-photon ionization
limit is only plotted for 1s (Ω1 = 0.5), and higher order
photo-ionization peaks appear at the low field end of the
4s and the 8s plots. For the lowest fields in these fig-
ures, Γ for the higher frequencies drop much faster than
the lower ones, which is a behaviour more pronounced
for the higher n-states. This can again be understood
considering that at low Ω, the rates decay according to
the exponential law Γ ∼ exp[−2(2Ip)

3/2/(3F )]. Recall-
ing that the field scales like ∼1/n4, and the ionization
potential like ∼1/n2, the exponent would increase as ∼n

when plotted against the field strength, resulting in the
diminishing of the ionization rate.

B. Ionization Probability

Fig. 3 shows the ionization probabilities out of 1s, 4s,
and 8s states for Hydrogen in (γ,Ω)-space, where γ varies
between 0 and 64, and Ω between 0.025 and 4. In con-
trast with the rate calculations, probability calculations
are performed using a finite duration laser pulse with
a width of 160 Rydberg periods at FWHM. This corre-
sponds to a pulse width of 80 fs for 1s, ∼1.5 ps for 4s,
and ∼12 ps for the 8s state. The contours are color coded
such that the bright yellow regions indicate saturation of
the ionization probability, i.e. complete ionization. An
important difference to keep in mind when relating Fig. 3
to Fig. 1 is that γ- and Ω-axes span different ranges. Also
the Ω-axis is in linear scale in Fig. 3, which is why the
curved ridges seen in Fig. 1 is replaced by the straight
peaks occuring at fixed values of Ω in Fig. 3. Regions
with γ < 2 in Fig. 3 are essentially all saturated for
the pulse width used for these simulations such that we
needed to go up in γ as high as ∼60, to see the larger
picture. For a shorter pulse than ours, the extent of the
saturated regions for all Ω would recede to lower γ, and
eventually ranges seen in Fig. 1 are recovered when the
pulse duration is shortened to a couple of Rydberg peri-
ods. In that case, however, the pulse duration is at the
attosecond scale, and even some of the high Ω would then
be considered in the field-ionization regime.

As in Fig. 1, the multiphoton ionization peaks are un-
mistakable and they extend to high values of the Keldysh
parameter due to the long pulse duration. The single-
photon ionization frequency Ω1 is again situated at n/2,
and it is here that the ionization probability is the largest
for the widest range of γ. This would be expected from
Fig. 1, however one feature that was not clear from Fig. 1
is that the broad region centered at Ω1 is splitted into
sub-peaks for n = 4 and 8. We believe that these peaks
are due to the energy splitting between the degenerate
l-states inside the n-manifolds, and the number of these
peaks matching almost one unit of Ω supports this suspi-
cion. As in the rate calculations, multiphoton peaks lead
to the single-photon ionization limit, and mark regions
of ionization involving multiphoton processes following
both direct and indirect paths. Many of these paths re-
sult in ionization following an excitation to an excited
state, which is evident from the Rydberg series like struc-
ture leading up to Ω1. However, regions in which the ion-
ization happens through a direct multiphoton transition
to the continuum, or via an assisted indirect process is
not distinguishable from these (γ,Ω)-maps. The slow de-
caying tail of the ionization probability beyond the single
ionization limit Ω1 is again indicative of the suppression
of ionization at high scaled frequencies due to the sta-
bilization seeded by quantum interferences reported in
Refs. [12, 13].
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The entire (γ,Ω) region seen in Fig. 3 is for γ ≫ 1
as a result of the long laser pulse we had to use to keep
the laser duration reasonably long for the entire Ω-range
we considered. Here reasonably long means longer than
what would be considered an attosecond pulse duration.
From the common Keldysh parameter point of view, this
is to say that everything seen in Fig. 3 is in the multipho-
ton regime, and no tunneling takes part in constructing
the landscape depicted in Fig. 3. Although Fig. 3 does
not distinguish tunneling regions from the multiphoton
regions in any way beyond the Keldysh criteria, one may
be inclined to assume the Keldysh view-point on account
of the multi-photon peaks that appear for Ω < n/2 and
extend high up in γ. In order to assess the extent of the
multiphoton character in these regions, and to determine
if any tunneling contributes to the overall ionization, we
look at the momentum distributions of the ionized part
of the wave function at various points on the (γ,Ω) land-
scape seen in Fig. 3.

IV. MOMENTUM DISTRIBUTIONS

In order to evaluate the momentum distribution of the
ionized electrons, we follow the same procedure outlined
in Ref. [9]. For sake of completes, here we briefly describe
the method. In the rate and probability calculations we
reported so far, the ionized part of the wave function is
removed from the box every time step during the propa-
gation of Eq. 7, in order to prevent unphysical reflections
from the radial box edge. This is done using a mask
function, which spans 1/3 fo the radial box at the box
edge. We retrieve the removed part of the wave function
by evaluating

∆ψl(r, t
′) = [1−m(r)]ψl(r, t

′) (9)

at every time step, and Fourier transform it to get the
momentum space wave function ∆ϕ(pρ, pz, t

′),

∆ϕ(pρ, pz, t
′) = 2

∑
l

(−i)l Yl,m(θ, φ)

×
∫ ∞

0

jl(pr)∆ψl(r, t
′)r2 dr (10)

Here the momentum p = (p2ρ + p2z)
1/2 is in cylindrical

coordinates and jl(pr) are the spherical Bessel functions.
We then time propagate ∆ϕ(pρ, pz, t

′) to a later final time
t using the classical action S,

∆ϕ(pρ, pz, t) = ∆ϕ(pρ, pz, t
′) e−iS (11)

For the time-dependent laser field F (t), action S is cal-
culated numerically by integrating p2z along the laser po-
larization direction

S =
1

2
p2ρ(t− t′) +

1

2

∫ t

t′
p2zdt

′′ (12)

pz =

∫ t

t′
F (t′′)dt′′ (13)

We are assuming that the ionized electron is freely prop-
agating in the classical laser field in the absence of the
Coulomb field of its parent ion, and this method is nu-
merically exact under this assumption.

We pick four points which we consider descriptive of
different features seen in Fig. 3. These points are labeled
on the (γ,Ω) landscape as A, B, C and D in the top row
of Fig. 4. The ordering of the letters are in increasing Ω,
whereas no particular relation is implied between the pro-
gression of the letters and the Keldysh parameter. Below
the (γ,Ω) map for each initial state, the momentum dis-
tributions corresponding to the marked points are shown,
with the horizontal axis being the momentum component
parallel to the laser polarization. In these momentum
distributions, momenta corresponding to three different
energies are marked with dashed semicircles: (a) energy
of the electron when it escapes by absorbing the mini-
mum necessary number of photons from its initial state,
(b) the 2Up, and (c) the 10Up limits. Classically, the
2Up limit emerges as the drift energy of the electron in
the laser field, and marks the maximum energy it can
attain when it escapes via the laser field alone without
rescattering with its parent ion. The electron can ac-
quire additional energy beyond this limit if rescattering
is involved, and there is a relatively flat plateau region in
the energy distribution of photoelectrons following 2Up,
which cuts off around ∼10Up [14, 15].

There are a few common physical characteristics seen
in all of the momentum maps in Fig. 4. First, ion-
ization by direct photon absorption is manifested as
rings in the momentum distributions, with a radius of
p ≃

√
2(Nω − Ip) where N is the minimum number of

necessary photons required for ionization. This ring is
centered at p = 0 a.u. if the ionization is directly from the
initial state and the electron escapes without rescatter-
ing with the ion. However, the center of the ring can be
shifted by as much as ∼10Up if rescattering occurs [16].
In some cases, the drag in energy caused by the laser
field (up to 2Up) combined with rescattering can smear
the momentum distribution from a well defined circle to
a broader ring. On the other hand, tunneling can be rec-
ognized as a continuous distribution centered at p = 0
a.u., which can extend from 2Up with diminishing am-
plitude up to ∼10Up. In the usual context of today’s
strong field experiments, these would be relatively lower
energy electrons when compared with ones appearing at
the multiphoton rings when one considers photoioniza-
tion of noble gas atoms with X-rays in today’s modern
light sources [17]. Both the multiphoton rings and the
tunneling momentum distributions are mostly aligned
along the laser polarization direction (p||), and do not
extend as far out in the perpendicular direction. This
drop in the electron yield as the observation angle is in-
creased off the laser polarization axis was observed in
the angular distributions from photoelectron spectra of
Xe [18].

Many of the momentum distributions seen in Fig. 4
display a multiphoton ionization ring at a momentum
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corresponding to its lowest order direct multiphoton es-
cape path. However, it is important to keep in mind that
these momentum maps are in logarithmic scale, and the
contours drop in factors of 2 in the 1s distributions, and
by factors of 4 in the 4s and the 8s cases. At points A
and B in 1s, the 3-photon and the 2-photon ionization
rings appear sharp in the momentum maps and run al-
most the entire angular range. In 1s (A), the 3-photon
rings are centered at ±2Up suggesting that the electron
absorbs three photons prior to rescattering from its par-
ent, ion having acquired the 2Up drag from the laser field.
The 3-photon rings on the left and the right sides are dis-
tinguished in the momentum distribution as the left and
the right side back rescattered electrons [16]. The ring
in 1s (B) however suggests a direct 2-photon ionization,
as it is centered at p = 0 a.u.. The single photon ring
in 1s (C) is incomplete, and shows an angular distribu-
tion of electrons that mainly come out about the laser
polarization axis. On the other hand, the single-photon
ionization ring is entirely absent for 1s (D), and the mo-
mentum distribution is completely contained within the
10Up semicircle. In all these maps for 1s, even though
photoionization rings appear on some of them, they are
several factors of 2 lower than the continuous tunneling
distributions that appear at the smaller momenta, for the
most part contained within the 10Up limit.

Rings of 2-photon ionization are also quite sharp in
the momentum distributions for the 4s and 8s initial
states, although they are also substantially smaller than
the low energy distribution at small p, suggesting dom-
inance of tunneling at points C for both initial states.
However, some photoionization rings are not sharp, but
rather dispersed over a momentum range, essentially cen-
tered where the ring would normally be found. Partic-
ularly, the rings in 8s (A) and (D) are most smeared
at momenta along the laser polarization direction, and
get sharper as the momentum vector becomes more per-
pendicular to the parallel direction. This is because, it is
only the parallel component of the the momentum vector
that accumulates energy as the electron is dragged in the
laser field, and when the projection of the total momen-
tum vector along this direction is small, there is less dis-
persion in the momentum distribution. As a result, the
rings get broader going down towards the p|| axis. Com-
plicated and intricate structures emerge in 4s (B) with
no particularly prominent structure at the momenta cor-
responding to 3-photon ionization, and low energy part
of the distribution is most prominent. In 4s (D), the
momentum corresponding to the 5-photon ionization is
less than the one corresponding to the 10UP limit, and
no particular structure can be made out within the large
spread inside the 10UP semicircle. The last interesting
feature worth pointing out in these maps is the one seen
in 8s (B), which are the two circular ridges centered at
p|| ≃ ±0.03 a.u.. They clearly have larger radii than the
10Up semicircle, meaning that they correspond to elec-
tron distributions which surpass the 10Up limit. These
higher energy structures again come from back rescatter-

ing and are much lower in amplitude than the distribu-
tion contained within the 10UP limit. These two ridges
are perfectly symmetrical in contrast to the asymmetric
ridges seen in [16] because in these cases the laser pulse is
much longer than what would be considered a few-cycle
pulse. They can also clearly be seen in 1s (B) and 4s (A)
in addition to in (C) for all initial states. The common
feature in all of the points shown in Fig. 4 is that the mo-
mentum distributions are dominated by the low energy
electrons − a distinct sign that tunneling dominates de-
spite the high values of the Keldysh parameter.

The points and the corresponding momentum distri-
butions seen in Fig. 4 demonstrate that although the
Keldysh parameter is larger than unity, tunneling can
still play a prominent role in ionization. The diametric
case, in which where γ < 1, is where tunneling is pre-
dicted to dominate the ionization dynamics. To find a
contradicting case, we look into the high Ω region for
ionization out of the 1s state with γ = 0.4 and γ = 0.8.
For these values of γ there is complete ionization as can
be inferred from Fig. 3. For the scaled frequency Ω = 8
beyond the single-photon ionization limit for 1s (not seen
in Fig. 3), the momentum distributions are seen in Fig. 5.
Similar to the momentum maps for 1s in Fig. 4, these dis-
tributions are also plotted in logarithmic scale with the
contours decreasing in factors of 2. The momentum val-
ues corresponding to the direct single ionization out of
the 1s state is again marked with a dashed semicircle, as
well as the 2Up and the 10Up limits as before. At the
lower Keldysh parameter 0.4, the single-photon momen-
tum is between the 2Up and the 10Up limits, whereas it
is larger than the 10Up momentum for γ = 0.8. In ei-
ther case, there is nothing with momentum less than the
2Up momentum limit, suggesting that the broadly spread
semicircular ridges straddling the single-photon momenta
are indeed the momentum ridges from the single-photon
ionization. This is most clear at the lower intensity of
γ = 0.8, where the single-photon ridge is much more
sharper at the expected momentum. In this case there is
nothing before the 10Up limit, and the ridge seen is en-
tirely due to single-photon ionization. The same is also
true for the γ = 0.4 case, however lower γ means higher
field strength resulting in the dispersion of the sharper
peak seen at the lower field of γ = 0.8. This demon-
strates that although γ < 1, we can find regions in the
(γ,Ω) space where the usual Keldysh ansatz does not
hold.

V. SUMMARY

In conclusion, we have presented photo-ionization rates
and probabilities out of the 1s, 4s, 8s and 16s states of
Hydrogen atom for wide ranges of the Keldysh parame-
ter γ and the scaled frequency Ω. We map the ionization
rates for a continuous wave (cw) laser and probabilities
for a laser pulse with a fixed duration in units of the clas-
sical orbital period in (γ,Ω) space. Taking constant field
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strength and constant frequency slices from the (γ,Ω)
map, well known hallmarks and structures can be recon-
structed from both the common strong field standpoint
(Γ versus F ) and the spectroscopic standpoint (Γ versus
Ω) for ionization rates, such as multiphoton resonances,
exponential decay and frequency independent, both char-
acteristics of tunneling decay [2, 7]. Suppression of ion-
ization can also be seen beyond the single-photon ioniza-
tion limit Ω1 = n/2 in both (γ,Ω) maps for the rate and
the probability, which was reported in Refs. [12, 13].
We further show that ionization regions dominated by

the field-ionization and multiphoton processes may both
exist in the high Keldysh parameter region γ > 1 by
calculating the momentum distributions for the ionized
electrons at particular points on the (γ,Ω) landscape. We
find that although the Keldysh ansatz suggests a predom-
inantly multiphoton picture for ionization in all of Fig. 3
due to its large γ range, below the single-photon ioniza-
tion limit Ω1 both tunneling and multiphoton processes
contribute to ionization with tunneling leading to most of
the ionization. Tunneling predicted by the low Keldysh
parameter is also absent at γ = 0.4 and 0.8 above the
Ω1 limit for ionization out of the ground state, as seen
from the momentum distributions shown in Fig. 5. In
this case, ionization is entirely due to single photon ab-
sorption with a sharper momentum ring for the higher γ
(lower intensity), and with a more dispersed ring for the

lower γ (higher intensity).

The coupling of the scaled frequency with the Keldysh
parameter in this sense serves to compliment γ for its in-
adequacy to account for the relevance of the time scale in-
herently present in the bound electron dynamics, i.e. the
Rydberg period of the electron, as Keldysh-like theories
assume no dynamics for the electron inside the potential
well prior to ionization. The dynamical characterization
outlined by γ is further augmented by inclusion of the
scaled frequency in this picture, because the tunneling-
multiphoton dichotomy suggested by the Keldysh pa-
rameter does not observe conservation of energy since
it comes about within a strictly tunneling scenario. Both
dynamical regimes of ionization can be attained for a cho-
sen small value of γ, by varying the scaled frequency,and
for the most part, they coexist in vast regions on the
(γ,Ω) map.
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Fig. 01
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FIG. 1: (Color online) Keldysh parameter γ versus scaled frequency Ω for n = 1, 4, 8 and 16 with the atomic wave packet
launched as an s-wave. Along the solid, dashed, and dotted lines F = 0.05, 0.1, and 0.5 a.u. from left to right, where F is
the peak electric field strength. The Ω-axes are in log2 scale whereas the γ-axes are in linear scale. The ionization rates Γ are
plotted in log10 scale with the brightest yellow being 2 a.u. and the faintest blue being -4.5 a.u.
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Fig. 02
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FIG. 2: (Color online) (Left column) Ionization rates Γ as a function of the scaled frequency Ω out of n = 1s, 4s and 8s states
of Hydrogen for three different peak field strengths: F = 0.05, 0.1, and 0.5 a.u. from top to bottom. These corresond to
intensities of 1.8 × 1017, 3.6 × 1015, and 1.8 × 1015 W/cm2. The Γ axes are in log10 scale. (Right column) Γ as a function of
the scaled peak electric field strength Fn4 for several Ω for ionization out of the same states. Again, the Γ axes are plotted in
log10 scale.
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Fig. 03
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FIG. 3: (Color online) Quantum ionization probabilities for ionization out of 1s, 4s, and 8s states of Hydrogen for a laser pulse
with a width of 160 Rydberg periods at FWHM. Both Ω and γ axes are in linear scale and the ionization probabilities are in
log10 scale. The yellow regions indicate complete ionization and the multiphoton ionization peaks as well as the suppression at
high scaled frequencies are clearly visible.
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Fig. 04
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FIG. 4: (Color online) Momentum maps for the γ > 1 region for selected points from the ionization probability landscape
of Fig. 3. The momentum distributions have only the momentum component parallel to the laser polarization marked as the
horizontal axis and the perpendicular axis is implied from the cylindrical symmetry of the problem. Dashed semicircles mark
momenta values corresponding to lowest order multiphoton ionization from initial state, the 2Up, and the 10Up limits. They
are plotted in logarithmic scale to bring out both multiphoton and tunneling features on the same plot.
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Fig. 05

FIG. 5: (Color online) Momentum distributions for low Keldysh parameters γ = 0.4 and γ = 0.8. Both distributions are for
ionization out of the 1s initial state with Ω = 8 in the single-photon ionization regime. Semicircles again mark the single-photon
ionization momentum values, as well as the 2Up and the 10Up limits.


