Multiphoton population transfer in a kicked Rydberg atom

adiabatic rapid passage by separatrix crossing

Turker Topcu and Francis Robicheaux

Department of Physics, Auburn University, Alabama 36849-5311, USA

May 28, 2010

Previous work with microwaves (mARP)

- * Earlier experimental work demonstrated 10γ transition in Li between states with n = 72 and $n \sim 82$ using microwaves (Maeda *et al.*)
- * Classical and quantum simulations showed substantial population transfer in Li and H atoms (**Topcu** *et al.*)
- * Final $\ell\text{-distributions}$ suggested that many photons absorbed/emitted during transition
- * Mechanism can be alternatively looked upon as a classical transition in phase space.
- * Also relevant for transferring highly excited Rydberg wave packets n > 300 in phase space for wave packet engineering (Rice group)

Quantum calculations in 3-d Classical calculations in 3-d Classical calculations in 1-d

$72p \rightarrow n = 80$ transition through 8γ resonance

- * For fixed peak field strength F = 2.5 V/cm ~83% Microwave driven ~44% cos³(ωt) driven
- * Time scales and chirp $\tau_R = 56.3 \text{ ps for } n = 72$ $\tau_R = 77.2 \text{ ps for } n = 80$ Pulse duration ~97 ns at FWHM Linear chirp range of $\pm \sim 1\%$ of ω
- * Only odd- ℓ are populated in both microwave and $\cos^3(\omega t)$ driving
- * Population spread out to entire ℓ -range
- * $\cos^5(\omega t)$, $\cos^9(\omega t)$, and higher order powers result in transfers at $\sim 10\%$ level and below

Quantum calculations in 3-d Classical calculations in 3-d Classical calculations in 1-d

$40p \rightarrow n = 46$ transition through 6γ resonance

- * Unidirectional kicks with flat-top carrier envelope
- * Turn off kicks right after the kick strength peaks (shorter envelope)

Quantum calculations in 3-d Classical calculations in 3-d Classical calculations in 1-d

Shorter envelope in time

- * Unidirectional kicks with shorter carrier envelope
- * Pulse duration of ${\sim}300$ ns at FWHM

* ~74% in *n* = 46

*
$$\ell < 5$$

- * Note that $\cos^3(\omega t)$ is $\frac{1}{4}\cos(3\omega t) + \frac{3}{4}\cos(\omega t)$
- * Accidental 3γ resonance 3ω differs from $\omega_{46\rightarrow49}$ by ~26% $\omega_{46\rightarrow50}$ by ~5% $\omega_{46\rightarrow51}$ by ~16%

Classical calculations in three-dimensions

 $n = 40 \rightarrow 46$ via 6γ resonance condition

- * Population initially sits at n = 40 and then suddenly spreads over an n range when critical peak kick strength is reached for $\cos^3(\omega t)$ driving
- * Progressing form $\cos^3(\omega t)$ to $\cos(\omega t)$, we go from $\sim 20\%$ to $\sim 80\%$ transfer without as much spreading in *n*

$$F(t) = F_{\mathcal{K}} \exp\left[-(t/t_{\mathcal{W}})^{6}\right]\left(\frac{a}{2}\cos(3\omega t) + \frac{4-a}{2}\cos(\omega t)\right)$$

Quantum calculations in 3-d Classical calculations in 3-d Classical calculations in 1-d

Classical calculations in one-dimension

- $n = 40 \rightarrow 46$ via 6γ resonance condition
- * Action-angle variables for hydrogen atom subject to $\sin^3(\omega t)$ driving
- * \sim 52% transfer for 26 V/cm into 43 < n < 47
- * \sim 35% ionization for 39 V/cm
- * For 26 V/cm, edge of the regular surface is sticky
- * By stronger driving, sticking can be overcome but now large chaotic sea yields to ionization

Future directions

- * Many driven systems actually fit this classical description, such as kicked/driven rotor, Morse potential, etc.
- * We have observed **complete population transfer** between the vibrational levels $\nu = 0 \rightarrow 4$ of a diatomic molecule by chirping through 4γ resonance using IR pulses
- * Effect of frequency profile with energy For Rydberg atoms and molecules: **frequency increases with energy** For kicked rotor: **frequency decreases with energy** What if **frequency increases and then decreases** with energy???

Thank you.