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The results of a theoretical investigation of the coherent interaction between many Rydberg atoms
are reported. The atoms are assumed to move very little during the time range we investigate.
We describe the basic interaction between atoms and show that (contrary to previous theoretical
studies) the interaction between the atoms can be coherent. The band structure for a perfect lattice
of atoms and the density of states for an amorphous distribution of atoms are presented. We also
give results for when the atoms are roughly positioned in a lattice. Finally, we performed detailed
calculations to understand when the Rydberg interactions are too strong for an essential states type
of approximation. The relevance of our results to previous measurements in a Rydberg gas and to
possible future experiments is discussed.
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I. INTRODUCTION

There have been several experimental and theoretical
investigations into the properties of a dense gas of Ryd-
berg atoms; by a dense gas, we mean there is a sufficient
number of Rydberg atoms so that the interaction between
Rydberg atoms is important or measurable. Broadly
speaking, interesting phenomena arise from many body
effects or from two body effects. In Rydberg gases,
the many body effects are achieved through the strong
interaction between the highly excited atoms and the
small energy separation between highly excited states.
Typically, the interaction between atoms is through the
dipole-dipole interaction and is roughly proportional to
the square of the linear size of the atoms divided by the
cube of the distance between the atoms.

In Refs. [1–5], atoms are excited into Rydberg states
chosen so that resonant energy transfer can occur; in this
process an atom in state A and an atom in state B in-
teract and convert A → C and B → D because the total
energy is roughly conserved EA + EB ' EC + ED. Pos-
sible richness can arise from the fact that states C or D
can then transfer to atoms of states A or B. For exam-
ple, three atoms in state |AAB〉 (i.e. atoms 1 and 2 in
state A and atom 3 in state B) can make the transitions:
|AAB〉 → |CAD〉 → |ACD〉. In the experiments, the
atoms are cold and barely move during the interesting
time period. Thus, the transitions are coherent and can
proceed in both directions. A gas of Rydberg atoms with
these resonant energy transfers have been shown to have
spectral properties that differ from what would be ex-
pected from single particle physics. Thus, some aspect
of many body physics is present.

The interaction between a pair of Rydberg atoms gives
rise to long range potentials which can be significant. In
Refs. [6–8], the long range potential affects the motion
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of the atoms. Two Rydberg atoms can be made to have
an attractive or repulsive potential; in the case of the at-
tractive potential, the atoms can accelerate toward each
other and collide. In Ref. [9], the long range potentials
of two np Rydberg atoms couple at very large distances
to two atom states with (n− 1)d, ns character which can
not be excited in the single atom limit. However, the for-
bidden levels are accessed when the density of Rydberg
atoms is high enough to give pairs within the critical dis-
tance. The strong interaction between Rydberg atoms
has been used in proposals for fast quantum gates[10]
and for a dipole blockade[11].

Lastly, the interaction between several Rydberg atoms
has many features in common with using a sequence of
metal nano-particles as a wave guide (as an example,
see Ref. [12] and Secs. III A and V below). In this sys-
tem, there is optical pulse propagation below the diffrac-
tion limit along arrays of metal nano-particles. Much of
the physics is reproduced through a simple point-dipole
model.

We present the results of theoretical investigations of
many body processes in a Rydberg gas. As in Refs. [1–
5], the atoms will hardly move over the important time.
But, unlike previous work where the atoms are at ran-
dom positions inside the gas, we imagine the atoms have
been prepared to have spatial correlation. The simplest
case we investigated is when the atoms are positioned to
be exactly on a cubic lattice. While this situation will
probably never be experimentally realized, it has several
features that may be of interest. The band structure of
a single p-state in a matrix of s-state atoms has particle
or hole properties depending on the polarization relative
to the wave number. We also investigated the density
of states for a random spatial distribution of Rydberg
atoms where there is one p-state in a matrix of s-state
atoms.

We also investigated a model that could be experimen-
tally observed with current technology. In this model, a
Rydberg atom is randomly placed inside a small region,
but the small regions are regularly spaced. Some of the
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atoms will start in state A and the others in state B.
This situation is sketched in Fig. 1. Such an array can
be achieved by starting with atoms prepared in an optical
lattice. Or more simply, a laser can be split and focused
into small regions of a gas so long as the width of a beam
is smaller than the distance between the beams. For this
case, we investigate the role that defects play in this sys-
tem with special emphasis on changes that arise from no
atom being present in a region or from two atoms being
present in a small region.

In most discussions of Rydberg-Rydberg interactions,
an essential states picture is used. In this picture, we
only include the few states that are degenerate or nearly
degenerate. This approximation should be accurate for
many situations. However, we can expect the accuracy
to decrease as the principle quantum number increases
because the energy differences between states decreases
as n increases. When n is high enough, a quasi-classical
picture obtains and we should expect transitions between
many states. Since most of our discussion will be based
on the essential states model, it is important for us to
understand the region where it is applicable. To address
this, we directly solved the time dependent Schrödinger
equation within two simplified models.

Atomic units are used except where explicitly stated
otherwise.

II. BASIC PARAMETERS

A. Coupling Potential

The relevant coordinates needed to describe the inter-
action between two Rydberg atoms are ~R (the vector be-
tween the two nuclei), ~r1 (the vector between the nucleus
of atom 1 and the electron of atom 1), and ~r2 (the vector
between the nucleus of atom 2 and the electron of atom
2). We will assume that the nuclei are not close enough
for the two electrons to overlap; thus, we do not need to
worry about symmetrization of the wave function. The
Hamiltonian is

H = H1 + H2 + V

V =
1
R
− 1

|~R + ~r2|
− 1

|~R− ~r1|
+

1

|~R + ~r2 − ~r1|
' ~r1 · ~r2 − 3(~r1 · R̂)(~r2 · R̂)

R3
(1)

where H1 and H2 are the Hamiltonians for the two Ryd-
berg atoms. In our analysis, we will only use the lowest
nonzero coupling potential (dipole-dipole) which is shown
above; a more accurate treatment of the potential does
not add new physics for the systems that are considered
here.

In the next two sections, we give expressions for the
matrix elements of the coupling potential between Ry-
dberg states on the two atoms. We will treat the case
of Rydberg atoms in zero or weak electric fields separate

from the case of atoms in strong electric fields. When
the atoms are in weak, electric fields the states have a
specific angular momentum while atoms in a strong field
have a large dipole moment.

1. Field free case

In the field free case, the Rydberg states for the two
atoms will usually have a specific angular momentum.
The matrix elements are effectively evaluated by rewrit-
ing the interaction potential in terms of radial and angu-
lar pieces. Using angular momentum relationships gives

V = −8π

√
2π

15
r1r2

R3

2∑
µ=−2

(Y1(r̂1)Y1(r̂2))
2
µ Y ∗

2µ(R̂) (2)

where the (Y1Y1)2µ means the two spherical harmonics are
coupled to total angular momentum 2 and z-component
µ through the usual Clebsch-Gordon coefficients.

When there is no electric field, states A and B are
eigenstates of angular momentum and have a degeneracy
of 2`a +1 and 2`b +1. For the case of two atoms interact-
ing through the potential V , there are 2·(2`a+1)·(2`b+1)
states of interest: (2`a + 1) · (2`b + 1) when atom 1 is in
state A and atom 2 is in state B and (2`b + 1) · (2`a + 1)
when atom 1 is in state B and atom 2 is in state A. The
only nonzero coupling is between states of type |AB〉 and
|BA〉. There are no couplings when A, B remain on the
same atom due to the Y1(r̂1) and Y1(r̂2) dependence of
the potential. This dependence also means that Rydberg
states do not couple unless |`a − `b| = 1 for this level of
approximation of the potential. If the direction between
atoms is taken to be in the z-direction (i.e. R̂ = ẑ), then
ma + mb is a conserved quantity.

If we write the Rydberg wave function in the form

ψn`m(~r) =
Rn`(r)

r
Y`m(r̂) (3)

then the matrix element between the states where atom 1
is na`ama, atom 2 is nb`bmb and where atom 1 is nb`bm

′
b,

atom 2 is na`am′
a can be written as

VAB,A′B′ = −8π

√
2π

15
(dna`a,nb`b

)2

R3

2∑
µ=−2

Y ∗
2µ(R̂)

×〈`ama, `bmb| (Y1(r̂1)Y1(r̂2))
2
µ |`bm

′
b, `am′

a〉 (4)

where the dipole matrix element is defined as

dna`a,nb`b
=

∫ ∞

0

rRna`a(r)Rnb`b
(r)dr (5)

In the special case of the interaction between an s-state
and a p-state, the non-zero matrix elements reduce to

V1m,00;00,1m′ = −
√

8π

3
(dna1,nb0)

2

R3

×(−1)m′
(

1 1 2
m −m′ m′ −m

)
Y2,m′−m(R̂) (6)

where the (...) is the usual 3-j coefficient.
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2. Static Electric Field

An obvious extension of the previous section is to ex-
amine the effect of Rydberg-Rydberg interaction when a
strong electric field is in the z-direction. A static electric
field breaks the spherical symmetry and gives states with
substantial dipole moments. This gives a non-trivial dif-
ference over the previous section in that there are now
non-zero diagonal matrix elements of the coupling po-
tential. Another difference is the large increase in the
number of states that can be coupled together through
the potential V . The increase in number of states gives
rise to interesting physics in the interaction between two
Rydberg atoms, but it vastly complicates the study of
many atoms. We will examine the full interaction be-
tween two Rydberg atoms in a later section. But for the
many atom systems, we will choose two states that couple
strongly to each other but weakly to all other states.

If the states A and B, are both the highest (or lowest)
energy state of the Stark manifold, then the strength of
the interaction between Rydberg states can be adjusted
by changing their separation so that other states do not
mix in. For the rest of this section, we will suppress all
quantum numbers except the principle quantum number
n since the states we are using are specified by being the
highest energy state of the Stark manifold. The main
important atomic information is the dipole connection
between states of different n-manifolds:

〈n|z|n〉 ' 3
2
n2

〈n− 1|z|n〉 ' 1
3
n2

〈n− 1|z|n + 1〉 ' 1
9
n2

〈n|x|n′〉 = 〈n|y|n′〉 = 0. (7)

Note that the interaction rapidly decreases as the differ-
ence in principle quantum number increases. Note also
that the x and y part of the interaction has no effect
within this approximation. Because the interaction is
proportional to the square of the matrix element, we will
only investigate the case where the difference in principle
quantum number is 1.

For two atoms, the diagonal terms in the interaction
are equal and given by

Vn,n′;n,n′ = Vn′,n;n′,n =
(

3nn′

2

)2 1− 3(R̂ · ẑ)2

R3
. (8)

When |n− n′| = 1, the off-diagonal matrix elements are
given by

Vn,n′;n′,n = Vn′,n;n,n′ =
(

nn′

3

)2 1− 3(R̂ · ẑ)2

R3
. (9)

B. Rough estimates

As a check on the feasibility of the experiment pro-
posed below, we estimate the effect of processes that

were not explicitly included in the model. Also, we es-
timate the time and distance scales for particular ge-
ometries. To get specific numbers, we will use 85Rb
(M = 1.4×10−25 kg) for the atom. We will also suppose
the laser focus size is 3 µm. To keep the situation sim-
ple, we look at the case when there are only two atoms
in a strong electric field so that the atoms have perma-
nent dipole moments. We assume that the highest energy
state of the Stark manifold is excited; the state for atom
1 starts with principle quantum number n1 and that for
atom 2 is n2. We are interested in the coherent transfer:
|n1n2〉 → |n2n1〉

1. Time scale

The interaction between two atoms in the highest en-
ergy Stark state in two different n-manifolds depends on
the difference in principle quantum numbers. For a pair
of atoms (one in the n = 50 and the other in the n = 51
state) separated by 20 µm, the coupling matrix element
is 1.3 × 10−11 a.u. when R̂ · ẑ ' 0. The time required
for the n = 50 character to hop to the other atom and
then back is 2.3 × 1011 a.u. which is 5.7 µs. If the two
states are n = 60 and 61, then the time is reduced to
2.7 µs since the time scales like 1/n4. If the distance be-
tween the states were reduced to 10 µm, then the time is
reduced by a factor of 8 since the time scales like R3.

2. Atomic motion

The thermal speed, v =
√

3kBT/M , of 85Rb at 300 K
is 300 m/s and at 300 µK is 0.3 m/s. The cases we
investigate require a few µs for interesting effects. Over
one µs, a Rb would travel roughly 1 mm at 300 K and
1 µm at 300 µK. The original region the atom exists in
is roughly 3 µm with a separation of 20 µm. Thus, it
appears that the atoms would need to be cooled so the
states can exchange atoms before they move out of the
excitation region. The Heisenberg uncertainty relation
does not affect the analysis of the spread of speeds; for
a 3 µm spot, the spread in speeds ∆v ∼ ~/(M∆x) ∼
2.5×10−4 m/s which is much less than the thermal speed.

3. Coherence

We are interested in coherent hopping of the states be-
tween atoms. For the hopping to be coherent, the elec-
tronic states of the Rydberg atoms can’t couple to other
degrees of freedom. Assuming other particles (e.g. elec-
trons or photons) are not present to contribute decoher-
ence, only the relative motion of the atoms couple to the
electronic motion. Previous theoretical studies (see for
example Ref. [13]) have concluded that the dipole hop-
ping of an excitation through a gas is not coherent unless
the temperature is extraordinarily low. In this section we
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argue that the systems we will investigate are coherent
even though the gas is very hot compared to the limit
discussed in Ref. [13].

The full wave function for two atoms (with the relative
motion of the atoms and the electronic wave functions)
can most simply be written as

Ψ(t) =
1√
2
(ψ+(~R, t)|+〉+ ψ−(~R, t)|−〉) (10)

where the electronic states are defined as

|±〉 =
1√
2
(|AB〉 ± |BA〉). (11)

At the starting time, t = 0, the inter-atom wave functions
are equal: ψ+(~R, 0) = ψ−(~R, 0) = ψ0(~R). The wave
function can be written in terms of the |AB〉 and |BA〉
states:

Ψ(t) = 1
2 [ψ+(~R, t) + ψ−(~R, t)]|AB〉+
1
2 [ψ+(~R, t)− ψ−(~R, t)]|BA〉 (12)

The probability for finding the atoms with the electronic
state |AB〉 or with the electronic state |BA〉 without re-
gard for the position of the atoms is

PAB(t) =
1
2
(1 + <[〈ψ+(t)|ψ−(t)〉])

PBA(t) =
1
2
(1−<[〈ψ+(t)|ψ−(t)〉]) (13)

where we have used the fact that the inter-atom functions
are normalized 〈ψ+|ψ+〉 = 〈ψ−|ψ−〉 = 1; the symbol <[]
means to take the real part of the expression. Clearly, the
probabilities have the unitarity property: PAB + PBA =
1. The starting condition gives PAB = 1 at t = 0.

The states evolve coherently so long as the + and
− functions retain the same form. More specifi-
cally, the evolution is coherent only for times where
|〈ψ+(t)|ψ−(t)〉| ' 1. To examine this effect we solved
the Schrödinger equation for this system. The radial
wave functions are the solution of a time dependent
Schrödinger equation

i
∂ψ±(~R, t)

∂t
=

[
P 2

2M
+

(
3nn′

2

)2 1− 3 cos2 θ

R3

]
ψ±(~R, t)

±d2(1− 3 cos2 θ)
R3

ψ±(~R, t) (14)

where d = nn′/3 when |n− n′| = 1.
The results of this simulation can be understood from

simple arguments. The overlap goes to 0 because of the
different potentials for the |+〉 and |−〉 states. Quali-
tatively, the two potentials lead to two different forces
which cause the packets to move to different positions in
space or momentum space. The different forces causes
a separation of central position of the ψ+ and ψ− wave
function; the difference in the forces is 6d2/R4. The sep-
aration after a time t is roughly δx = (δF )t2/2M =

3d2t2/(MR4). The time required for a complete transi-
tion AB → BA → AB is T = 2π/∆E = πR3/d2. Sub-
stituting this in for the time gives δx = 3π2R2/(Md2) '
1.0×10−5 (R/d)2 Å. For the cases we are thinking about
R/d < 103. Thus the positions will separate by less than
a nm which is much less than the width of the initial
wave packet.

When the atoms do not move far compared to their
separation or the localization region, the wave functions
are well represented through the impulse approximation:

ψ±(~R, t) ' exp
[
−iE±(~R)t

]
eiφ(~R,t)ψ0(~R) (15)

where φ(~R, t) is a phase common to both wave functions
and E±(~R) = ±d2(1− 3 cos2 θ)/R3 are the relative ener-
gies of the ± states if the atoms were fixed with a sep-
aration ~R. Using this expression to compute the proba-
bilities for finding the atoms in arrangement AB or BA
gives the form

PAB(t) =
∫

PAB(~R, t)P (~R)d3 ~R

PBA(t) =
∫

PBA(~R, t)P (~R)d3 ~R (16)

where P (~R) = |ψ0(~R)|2 is the probability density for find-
ing the atoms with separation ~R and

PAB(~R, t) =
1
2

∣∣∣e−iE−(~R)t + e−iE+(~R)t
∣∣∣
2

PBA(~R, t) =
1
2

∣∣∣e−iE−(~R)t − e−iE+(~R)t
∣∣∣
2

(17)

are the probabilities for finding the atoms with the com-
binations AB or BA at time t if the atoms are at sep-
aration ~R. For any specific separation, the probabilities
oscillate between 0 and 1 with a frequency proportional to
E−(~R)−E+(~R). However, the average over ~R in Eq. (16)
causes a decoherence due to the spatial dependence of the
frequency.

These considerations lead to a simple picture of when
the coherence holds. We compute the evolution of the
system for many different and random separations, ~R,
that are consistent with an experimental distribution;
we average the observables over the different separations.
This should be an accurate procedure so long as the con-
ditions are such that the atoms do not move far during
the relevant time period.

III. SIMPLE BANDS

A simple case of coherent hopping is when all of the
atoms are on a regular lattice. There are many exam-
ples of this type that can be investigated. We chose the
simplest example: one p-atom with all of the other atoms
having s-character. We picked a simple geometry (cubic)
although others could be equally interesting. Because
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there are 3 p-states (m = −1, 0, 1), there will only be 3
bands for each wave number k. Since there is only one p-
type atom, the state can be specified by giving the atom
that the p-state is on and the azimuthal quantum num-
ber: |βm〉 will mean that atom β has p-character with
azimuthal quantum number m and all other atoms are in
the s-state. To somewhat simplify the notation we will
combine parameters:

γ =

√
8π

3
(dna1,nb0)

2

δx3
(18)

where δx is the spacing of the atoms. This parameter
has been defined so that the band energy divided by γ is
independent of the dipole matrix element and the spacing
between atoms.

For a D-dimensional lattice, the eigenstate can be writ-
ten as the superposition:

ψ~k,α =
1√
N

∑

β′m′
ei~k·~Rβ′Um′α(~k)|β′m′〉 (19)

where N is the total number of atoms, ~Rβ is the posi-
tion of the β atom, ~k is the wavenumber, α determines
the band at wavenumber ~k and Umα(~k) is a unitary ma-
trix for any fixed ~k. The time independent Schrödinger
equation takes the form:

Hψ~k,α = εα(~k)ψ~k,α (20)

We assume that the diagonal elements of the Hamilto-
nian have been removed since they are the same for ev-
ery state. Projecting the state 〈βm| onto the Schrödinger
equation and using the matrix element from Eq. (6) gives
3× 3 Hermitian diagonalization problem:

∑

m′
Hm,m′(~k)Um′,α(~k) = Um,α(~k)εα(~k) (21)

where the Hermitian matrix is given by

Hm,m′(~k) = −γδx3(−1)m′
(

1 1 2
m −m′ m′ −m

)

×
∑

β′ 6=β

e−i~k·~Rββ′
Y2,m−m′(R̂ββ′)

R3
ββ′

(22)

where ~Rββ′ = ~Rβ − ~Rβ′ .
We are interested in the band structure of this sys-

tem which means the N → ∞ limit. We compute the
3×3 Hermitian matrix by numerical summation, increas-
ing the number of atoms in the sum until convergence is
achieved.

The trace of the Hm,m′ matrix is 0 for all ~k. This will
constrain the sum of the band energies to be 0. This has
the consequence that near ~k ∼ 0 there must be bands
that have positive effective mass and bands that have
negative mass. A wave packet centered at wavenumber
~k0 has the group velocity for band α:

~vα(~k0) =
[
~∇~kεα(~k)

]
~k=~k0

(23)

There will be some bands with particle character (pos-
itive group velocity proportional to ~k for small ~k) and
some bands with hole character (negative group velocity
proportional to ~k for small ~k).

A. Linear Lattice

The simplest case is a linear lattice which consists of
atoms equally spaced on a line. The band energies are
plotted in Fig. 2. Two of the bands are degenerate. These
are the bands corresponding to transverse waves (the
lobes of the p-orbital perpendicular to the line of atoms);
the two directions orthogonal to the line of atoms are
equivalent. All of the bands have a quadratic k depen-
dence for small k: εα ∼ Cα + Dαk2. This means the
magnitude of the group velocity is proportional to k at
small k.

The two degenerate bands have hole character. The
band corresponding to longitudinal wave has particle
character. This exactly matches the character of the
bands for optical pulses propagating along a series of
metal nano-particles[12]. The degeneracy means that if
the bands cross they must cross at ε = 0. For a perfect
lattice, the bands exactly cross because there is no cou-
pling between the longitudinal and transverse waves. If
there were defects in the lattice, especially some atoms
shifted out of line, then the degeneracy of the two trans-
verse bands would be lifted. Also, the crossing would be
replaced by an avoided crossing. If the amount and size
of the defects were small, the coupling between the bands
would be localized to wavenumbers near the avoided
crossing.

B. Square Lattice

The bands for a square lattice are two dimensional
functions: εα(kx, ky). The Brillouin zone for a square
lattice has three special points: center, (kx, ky) = (0, 0),
which is the Γ point, center of a side, (π/δx, 0), which
is the X point, and the corner, (π/δx, π/δx), which is
the M point. A common way of presenting the bands
is to plot the band energy along three special lines that
connect these points: ∆ connects the points Γ and X
(i.e. from the center of the Brillouin zone to the center
of a side), Σ connects the points Γ and M (i.e. center to
corner), and Z connects the points X and M (center of
side to corner).

The band energies are plotted in Fig. 3 for these lines
as a function of k = |~k| =

√
k2

x + k2
y. The solid lines

are the band energies along the ∆ line, the dashed lines
are along the Σ line, and the dotted lines are along the
Z line. The character of the eigenvectors let us assign
the different bands. At the center and the corner of the
Brillouin zone, two of the bands are degenerate and one
is non-degenerate. The non-degenerate band corresponds



6

to the p-state having m = 0 character: this is the state
whose wave function has a nodal plane in the xy-plane.
Thus, the non-degenerate band has character where the
lobes of the p-state are perpendicular to ~k; the band with
m = 0 character crosses the other bands due to the lack
of coupling to states with m = ±1 character. The two
degenerate bands at |k| → 0 have the lobes of the p-state
in the xy-plane. For both the Σ and ∆ lines, the band
that linearly increases from |k| = 0 has p-state with the
lobe perpendicular to ~k while the band that is flat near
|k| = 0 is parallel to ~k.

For this system, the bands near |k| = 0 with p-state
lobes perpendicular to ~k have band energies that change
linearly with k. These bands have roughly constant
group velocity for small ~k and the group velocity does
not depend on the direction. Thus the perpendicular
bands behave neither like particles or holes, but like pho-
tons/phonons. Interestingly, the non-degenerate band
has negative group velocity: a wave packet moves in the
opposite direction to the wavenumber. Another interest-
ing feature is that the sign of the group velocity depends
on the direction of ~k: the longitudinal wave can behave
like either a particle or hole depending on k̂.

C. Cubic Lattice

The Brillouin zone for a cubic lattice has four spe-
cial points: center, (kx, ky, kz) = (0, 0, 0), which is the Γ
point, center of a face, (π/δx, 0, 0), which is the X point,
center of an edge, (π/δx, π/δx, 0) which is the M point,
and a corner, (π/δx, π/δx, π/δx), which is the R point.
We have computed the bands along 6 lines that connect
these points: ∆ connects Γ and X (center of the Brillouin
zone to the center of a face), S connects X and R (center
of a face to a corner), T connects M and R (center of an
edge to a corner), Σ connects Γ and M (center to center
of an edge), Z connects X and M (center of a face to
center of an edge), and Λ connects Γ and R (center to a
corner).

The band energies are plotted in Fig. 4 for these lines
as a function of k = |~k| =

√
k2

x + k2
y + k2

z . The character
of the eigenvectors let us assign the different bands. All
four of the special points have degenerate states and and
the ∆, T and Λ lines have degenerate bands. The two
bands with the p-state perpendicular to k̂ are degenerate
at the Γ, X and M points and all states are degenerate at
the R point (corner). For the ∆, T , and Λ lines the two
bands with the p-state perpendicular to k̂ are degenerate;
for ∆ and Λ these are the lower energy bands while the
degenerate bands are the higher energy bands for T .

The bands show a remarkable richness for such a simple
system. All of the bands near k ∼ 0 have particle or hole
character depending on the direction of k̂. But interest-
ingly, whether a band has particle or hole character near
k = 0 depends on the direction of ~k. The cubic lattice

is also interesting because the interaction is not well ap-
proximated by only including nearest neighbor (or even
next nearest neighbor) interactions. Because the number
of atoms in a spherical shell increases proportional to R2

while the interaction decreases like 1/R3, the atoms at
large distances must be included for accurate band en-
ergies near k ∼ 0. The sum in Eq. (22) only converges
due to the presence of the Y2µ(R̂) and the exp(i~k · ~R);
the changing sign of these functions give cancellations
that converge the sum. The k = 0 limits can be found
analytically by converting the sum in Eq. (22) into an in-
tegral; the integral can be performed analytically which
gives the energy of the band with the p-state parallel to
k̂ as ε =

√
8π/27γ and the energies of the degenerate

perpendicular states at ε = −
√

2π/27γ.

IV. AMORPHOUS DISTRIBUTION

In Refs. [1–5], a cold gas is excited to Rydberg states
that can make degenerate transitions to nearby states.
A typical description of this system is that a state hops
away after making the transition. We have investigated
the hopping assumption through large numerical diago-
nalization. Our results are not in complete agreement
with previous theoretical investigations[3, 4] but do sup-
port the main conclusions.

We performed calculations with two models. In both
models, a single p-type atom is in a gas of s-type atoms.
The N atoms are randomly positioned within a cube with
a length L so that the density is N/L3; to minimize the
effect of the surfaces, we use a cyclic interaction between
the atoms: the x-difference is ∆Xij which is given by
whichever is smaller in magnitude Xi−Xj or Xi−Xj±L
(similar prescription for the y and z components). For
a given number of atoms, we performed M independent
calculations with the atoms at random positions. We
increased N until convergence was achieved.

In the first model, we used the form of the interaction
which was used in previous studies[3, 4]. This is a simpli-
fied form of the dipole-dipole interaction where only the
radial dependence of the interaction is retained. Defin-
ing the state |j〉 to be the atom with p-character, a scaled
interaction Hamiltonian is defined as

H̄ij =
1
N

(
L

|∆~Rij |

)3

(24)

for i 6= j and H̄ii = 0. The main simplification in this
Hamiltonian is the fact that the coupling is the same
sign with every atom and the degeneracy of the p-state
is ignored. The scaling removes the trivial dependence
on the dipole strengths and the density.

In the second model, we used the form of the interac-
tion in Eq. (6). This is a somewhat more realistic interac-
tion since it accounts for the angular momentum of the
Rydberg electron; however, in the actual experiments,
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the states are eigenstates of the total angular momen-
tum of the Rydberg electron (spin plus orbital) which
changes the details of the interaction. Because we in-
clude the degeneracy of the p-states in this model, the
number of states is 3× the number of atoms. Again, we
have scaled the interaction potential to remove the trivial
dependence on the density and the dipole strengths:

H̄ij = V (∆~Rij)
L3

d2N
. (25)

In Fig. 5, we show the distribution of eigenenergies for
the two models. In Fig. 6, we show the time dependence
of the probability for finding the p state at the atom it
started on. It is clear from this figure that the more sim-
plified interaction, Eq. (24), substantially differs from the
interaction that includes the correct effect from the an-
gular momenta and the angular dependence in V . How-
ever, the differences between the models is quantitative
and the main conclusions from previous theories seem to
be unchanged.It is interesting that most of the depen-
dence in both figures is already present with 8 atoms;
this is because p-state is distributed over few atoms at
short times. For the energy distribution, there is only
a small energy range (width roughly 1 in scaled units)
that changes with the number of atoms. For the time de-
pendent probability in Fig. 6, the rapid drop (to roughly
P = 1/2) is accurately reproduced with 8 atoms. It is
the slower decay (and small energies) that depends on
the number of atoms.

This scenario can be explained because the large en-
ergy shifts and the corresponding rapid drop in time is
due to close pairs which give large interactions: H̄ij .
Close pairs roughly act like isolated systems because the
pair energy shifts them out of resonance with the rest of
the atoms; this is similar to the dipole blockade idea[11].
The p-state then hops back and forth between the close
atoms; it is pinned to the defect at early times. However,
there are some regions within the gas where many atoms
are roughly equidistant; within these regions the p-state
can diffuse far from the initial atom.

This idea can be quantified. If Pj,j0(t) is the prob-
ability that the p-state is on atom j when it starts on
state j0, then the quantity N ≡ [

∑
j P 2

j,j0
(t)]−1 roughly

tracks the number of atoms the p-state is spread over if
it starts on atom j0. For the more sophisticated model,
there are geometries and j0 that did not allow the p-state
to spread (roughly 24 % starting j0 spread over 4 or less
atoms at t = 4). The remaining part of the population
was spread over a wide distribution of atoms which seems
to represent the p-state hopping away from the original
atom.

V. HOPPING IN A SMALL NON-PERFECT
LATTICE

The hopping of a Rydberg excitation between atoms
has been invoked to explain the results in Refs. [1–5].

We note that this hopping could be directly measured.
This can be accomplished by having a laser excite small
regions of a gas into a Rydberg state A; a second laser can
excite a disjoint region into a state B. By using a CCD
camera and selective field ionization, the character of the
Rydberg state in each region can be ascertained and the
hopping of the Rydberg state can be seen experimentally.

Since we imagine the states will be distinguished by
ramping an electric field, we will assume the atoms are
always in a strong electric field and that the Rydberg
states are Stark states. The interaction between the Ry-
dberg states will be through Eqs. (8) and (9). To be
specific, we will treat the case where one atom is excited
to the n = 61 state and all other atoms are in n = 60.
Each Rydberg atom is created randomly within a cube
with edge length of 3 µm and nearest neighbor separa-
tion of 20 µm. For all cases, we imagine the electric field
is perpendicular to the line/plane of atoms so ẑ · R̂ ∼ 0.

We plot the results for a line of atoms in Fig. 7; for
all cases, the regions are along the x-axis with the n =
61 state starting in the left-most region. The simplest
result is when there are only two atoms. The probability
for finding the n = 61 state in the left-most region is
plotted as the solid line and the probability for finding
the n = 61 state in the right-most region is the dotted
line. If we were to pick a specific distance between the
atoms, the probability would oscillate from 1 to 0 like
cos2 ωt. Because the distribution is somewhat random
in space, there is a range of frequencies that need to
be averaged over and this gives the damping. The next
case we plot is for 6 atoms: 1 atom of n = 61 and 5 of
n = 60. Again we started the n = 61 state in the left-
most region. The short-dashed line shows the probability
for finding the n = 61 state in the left-most region and
the dash-dot line shows the probability for finding it in
the right-most region. It is somewhat surprising that the
probability for finding n = 61 in the left-most region
recurs up to 0.3 at ∼ 8 µs since the two atom case has
damped to the average value by that time. Note also
that the probability for finding n = 61 in the right-most
region peaks at ∼ 4 µs to a value of 0.3. The probabilities
oscillate out to ∼ 20 µs and shows that the coherence
survives the spatial averaging for substantial times. For
the last case we present, we show the effect of having
an atom missing from one of the regions; this case has 5
atoms in 6 regions with the pattern 61,60,skip,60,60,60
(i.e. there is no Rydberg atom in the third region). The
long dashed curve is the probability for finding the n = 61
in the left-most region. The probability for finding n =
61 in the left-most region behaves like the two atom case
and there is very little probability for finding it beyond
the skip region during the first 10 µs. The n = 61 state
has a difficult time jumping the gap caused by the missing
atom because the interaction between region 2 and region
4 is a factor of 8 smaller than that between successive
regions. A similar effect occurs if there are two atoms
within the same region; the two nearby atoms interact
so strongly that the pair energy is well shifted away from
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the band energy so they do not interact strongly with the
rest of the atoms.

These are not the only interesting cases of Rydberg
atoms in a line. We have investigated several other
cases (atoms arranged in a circle geometry, four atoms
in the pattern 61,60,skip,60,60, N atoms in the pattern
61,skip,60,60,60,60,..., two atoms in the excited state
61,60,60,60,61, etc). Each of these has features that
would be worth more detailed studies.

We plot the results for two dimensional array of atoms
in Fig. 8. Again, we investigated several cases but present
results for only one of them. This case is a 2× 2 grid of
atoms. The solid line is the probability for finding the
n = 61 state on the atom it started on, the dotted line
is the probability for finding it on either of the atoms in
adjacent corners, and the dashed line is the probability
for finding it on the opposite corner. We note that the
n = 61 state seems to first jump to the adjacent corner
before jumping to the opposite corner. We find that the
coherence is somewhat less sensitive to the randomness in
the relative positions of the atoms for the square lattice;
this means we could reduce the distance between atoms
and preserve coherence.

VI. STRONG RYDBERG-RYDBERG
INTERACTION

An essential states model has been assumed in previous
treatments of Rydberg-Rydberg interactions. We investi-
gate the validity of this assumption. In the next section,
we numerically solve the time dependent Schrödinger
equation for a model interaction between atoms. With
this model, we investigate when the Rydberg atoms will
make transitions to n-states outside of those being ex-
plicitly treated. In the following section, we numerically
solve for the interaction between two hydrogen atoms
where transitions can be made within the n-manifold.
This investigation also affects the predictions of Ref. [10]
where the interaction between two Stark states was an
important aspect of using the dipole-dipole interaction
for ”fast quantum gates”.

A. n-changing interaction

We solve the time dependent Schrödinger equation for
the model potential: V (r1, r2) = −1/r1−1/r2+r1r2/R3.
The limit R → ∞ gives two isolated atoms. The atoms
have outer radial turning points at r1 = 2n2

1 and r2 =
2n2

2. We examined two cases: (1) when n1 = n2 = n
and (2) when n1 = n, n2 = n + 1. Within the essential
state model, the first case is non-degenerate; however,
we note that the states with n1 = n + 1, n2 = n− 1 and
n1 = n−1, n2 = n+1 are shifted in energy by 3/n4 from
the initial state. In case (2), this state is degenerate with
n1 = n + 1, n2 = n but again there are states that differ
by energies of order 1/n4. The results for the limitations

of the essential states model was similar for both initial
states. We report the details for model (1) where both
atoms start in the same n-state.

We expanded the wave function in a basis of states
ψn1(r1)ψn2(r2) and expanded the range of the basis func-
tions until convergence was achieved. We started with
R = 8n2 and reduced R until the initial state started
to substantially mix. The states n, n are most strongly
coupled to n− 1, n + 1 and n + 1, n− 1 due to the small
energy difference: |εn + εn − εn−1 − εn+1| ∼ 3/n4. We
computed the time average of finding the pair of atoms
in the 3 states n, n, n∓1, n±1 if the atom started in the
state n, n. We found that the probability for finding the
atom-pair in these states decreased to ∼ 90% at R ∼ 8n2

for n = 40and the probability decreased to ∼ 50% at
R ∼ 4.5n2 for n = 40 and R ∼ 5.2n2 for n = 60.

Our conclusion is that the transition between n-
manifolds should be weak for R > 10n2 as long as
n < 80 unless accidental degeneracies are present. This
distance is somewhat smaller than might be expected.
The important point is that the transition matrix ele-
ment n, n → n−1, n+1 or n+1, n−1 is proportional to
(n2/3)2 since there are two dipoles between states in dif-
ferent n-manifolds; the (1/3)2 reduces the coupling by an
order of magnitude over what might be expected. For dif-
ferent applications that require the mixing to be less than
10% the distance would need to be larger. Using these
values, we find that the distance at which the essential
states approximation becomes problematic is R ∼ 2 µm
for n = 60 which is much smaller than the values used in
the simulations of the previous section.

B. Within Stark manifolds

The interaction between two H-atoms in an electric
field, F , gives rise to a potential:

V = (z1 + z2)F +
1

R3
[~r1 · ~r2 − 3(~r1 · R̂)(~r2 · R̂)] (26)

which gives the Stark splitting of the energy levels and
couples together the states within the n-manifolds. For
the special case of two H-atoms, we can compute the
matrix elements between the different states using the
usual decomposition of the ~r operators in terms of the
scaled Runge-Lenz vector[14]:

~r1 =
3
2
n1

~A1 ~r2 =
3
2
n2

~A2 (27)

The scaled Runge-Lenz vector and the orbital angular
momentum operators can be expressed in terms of com-
muting angular momenta

~L1 = ~J1 + ~J2
~A1 = ~J1 − ~J2

~L2 = ~J3 + ~J4
~A2 = ~J3 − ~J4 (28)

Although many aspects of H-atoms in fields have been
explored, we do not know of any treatments of a pair of
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interacting H-atoms at this level of approximation. This
model should be the subject of a more detailed study
than that presented in this section.

For a single atom in a static electric field, the pro-
jection of Stark states on angular momentum states is
simply the Clebsch-Gordon coefficients since ~L is the ad-
dition of the two angular momentum:

〈ψn`m|ψnj1m1j2m2〉 = 〈`m|j1m1j2m2〉. (29)

The magnitude of ~J1 and ~J2 are both j1 = j2 = (n1 −
1)/2. The range of the azimuthal quantum number is
−j1 ≤ m1 ≤ j1. The change in the energy due to
the electric field is Em1m2 = 3Fn1(m1 − m2)/2. The
maximum energy is when m1 = j1 = (n1 − 1)/2 and
m2 = −j2 = −(n1 − 1)/2.

In terms of the commuting angular momenta, the cou-
pling potential can be written as

V =
3
2
F [n1(J1z − J2z) + n2(J3z − J4z)]

+
9n1n2

4R3
{( ~J1 − ~J2) · ( ~J3 − ~J4)

−3[( ~J1 − ~J2) · R̂][( ~J3 − ~J4) · R̂]} (30)

The eigenstates of this interaction will be a superposi-
tion of the states which we write as |m1,m2,m3,m4〉
(for notational simplicity we suppress the j and n
quantum numbers since they are fixed for specified n-
manifolds). The highest energy state when R → ∞ is
|j1,−j2, j3,−j4〉 which corresponds to both atoms being
in the highest energy state of the Stark manifold.

The dipole-dipole interaction acts to mix the Stark
states. The mixing can be suppressed if the spacing
between the Stark states is large compared to the cou-
pling matrix elements. We examined two special cases
(~R parallel to ~F and ~R perpendicular to ~F ) to deter-
mine the distance R where the Stark states start be-
coming mixed for a fixed external field F . We found
that the transition from little mixing to complete mix-
ing occurred over a small region of R. The separa-
tion distance between strong mixing and little mixing is
roughly the distance where the dipole electric field from
one atom is comparable to the external field: n2/R3 ∼ F .
This implies the atoms will need a distance greater than
Rcut ∼ Cn2/3F−1/3 for the essential states approxima-
tion to hold; the parameter C is independent of n and
F . If F is in V/cm and R is in µm then calculations for
n = 41, 61, 81 give C ∼ 0.16 when R̂ = ẑ.

However, it is important to note that if F is too
large then states between different n-manifolds start mix-

ing and then further complications arise from jumps to
adjacent n-manifolds. The n-mixing field strength is
F ' 1/(3n5). The minimum distance that allows the
essential states approximation will be when the field is
slightly less than 1/(3n5); this field gives the minimum
Rcut ∼ Dn7/3 where D ∼ 1.35 × 10−4 µm when R̂ = ẑ;
D is reduced slightly to 1.1×10−4 µm when R̂ = x̂. It is
important to note that the minimum distance where the
essential states approximation works well increases faster
than the size of the atom which increases like n2.

For the n = 60 state, the minimum distance that the
essential states model works is roughly 2 µm. Thus, the
essential states model should be a very good approxima-
tion for the examples described in previous sections.

VII. CONCLUSIONS

We have investigated several aspects of strong inter-
actions in a Rydberg gas. We performed a full simula-
tion of the motion of two atoms to obtain the conditions
when the interaction between Rydberg atoms is coher-
ent; in contradiction with previous studies, we expect
the dipole hopping of Rydberg excitations to be coher-
ent. We also investigated the limitations of the essential
states model since this has been the foundation of pre-
vious treatments of both Rydberg gases and effects such
as the dipole blockade; we introduced two models (which
could be investigated more deeply) to study understand
the transitions to adjacent n-manifolds and transitions
within an n-manifold.

We studied the hopping of an excitation through a Ry-
dberg gas in various configurations. We studied two mod-
els with random placement of atoms and found that the
main points of previous discussions of this situation[1–
5] were correct although more realistic models affect the
quantitative properties. We studied the band structure
for a perfect lattice of Rydberg atoms and found many
similarities with studies of optical excitations along metal
nano-particles. We also studied small arrays of atoms in
nearly regular arrangements since these are more exper-
imentally accessible. We found that the Rydberg excita-
tion should coherently hop between atoms in configura-
tions that are experimentally accessible.
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2/δx3) as a function of the wave number (in
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Note that near k = 0 some bands have positive curvature
(behave like particles with the group velocity the same sign

as ~k) and some have negative curvature (behave like holes

with the group velocity in the opposite direction of ~k).

4358 (1999).
[5] W.R. Anderson, M.P. Robinson, J.D.D. Martin, and T.F.

Gallagher, Phys. Rev. A 65, 063404 (2002).
[6] A. Fioretti, D. Comparat, C. Drag, T.F. Gallagher, and

P. Pillet, Phys. Rev. Lett. 82, 1839 (1999).
[7] R.A.D.S. Zanon, K.M.F. Magalhaes, A.L. de Oliveira,

and L.G. Marcassa, Phys. Rev. A 65, 023405 (2002).
[8] A. L. de Oliveira, M. W. Mancini, V. S. Bagnato, and L.

G. Marcassa, Phys. Rev. Lett. 90, 143002 (2003).
[9] S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y.

P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R.
Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91,
183002 (2003).

[10] D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Coté,
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FIG. 3: Same as Fig. 2 but for a square array of atoms. The
solid lines are the band energies along the ∆ line (center of
the Brillouin zone to the center of an edge, the dashed lines
are along the Σ line (center of the Brillouin zone to a corner),
and the dotted lines are along the Z line (center of an edge
to an adjacent corner). Two bands (with the lobe of the
p-orbital in the plane of atoms) are degenerate only at the
center and a corner of the Brillouin zone. Two of the band
energies (the lobe of the p-orbital perpendicular to k̂) are
proportional to k near k = 0; excitation of these bands behave
more like acoustic phonons or photons (no dispersion). Note
some of the bands behave like particles and some like holes
near k = 0. Also, one of the bands (the longitudinal band
with the direction of the lobe of the p-orbital in the same

direction as ~k) behaves like a hole or a particle depending
on the direction (toward the middle of an edge or toward a
corner).

FIG. 4: Same as Figs. 2 and 3 but for a cubic array of atoms.
The solid lines are the band energies along the ∆ line (center
of the Brillouin zone to the center of an edge), the dash-
dot lines are along the S line (center of a face to a corner),
the dash-dot-dot-dot lines are along the T line (center of an
edge to a corner), the short-dashed lines are along the Σ line
(center to center of an edge), the dotted lines are along the
Z line (center of a face to center of an edge), and the long-
dashed lines are along the Λ line (center to a corner). The
corner of the Brillouin zone is triply degenerate.

FIG. 5: The distribution of energies for a random placement
of Rydberg atoms: N Rydberg atoms are randomly posi-
tioned within a cube and wrap boundary conditions are used
for the interaction potential. The energies are scaled as dis-
cussed in the text. The solid line and dotted line is for one
p-state and N − 1 s-states: the solid line is the average of
many geometries with N = 216 and the dotted line is the
average of many geometries with N = 8. This suggests that
(except for the small region −1 < ε < 1) the main determina-
tion of the energy depends on less than 8 atoms. The dashed
line is for the simplified interaction potential used in previous
theoretical treatments; this potential simplifies the angular
dependence of the interaction.

FIG. 6: The probability, P , for finding the p-state on the
same atom that it starts on as a function of scaled time. The
line types are the same as in Fig. 5. Note the fast drop in
probability is well reproduced with 8 atoms which shows that
most of the drop is due to hopping to adjacent atoms. The
longer time development shows the hopping of the p-state
further from its original position.
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FIG. 7: The probability for finding the n = 61 state on various
atoms. Atoms are excited within regions that are separated
by 20 µm and each of the regions have a width of 3 µm as
drawn in Fig. 1. For two regions, the probability for finding
the n = 61 state in the left-most region is plotted as the solid
line and the probability for finding the n = 61 state in the
right-most region is the dotted line. The next case we plot
is for 6 atoms: 1 atom of n = 61 and 5 of n = 60. Again
we started the n = 61 state in the left-most region. The
short-dashed line shows the probability for finding the n = 61
state in the left-most region and the dash-dot line shows the
probability for finding it in the right-most region. For the last
case we present, we show the effect of having an atom missing
from one of the regions; this case has 5 atoms in 6 regions with
the pattern 61,60,skip,60,60,60 (i.e. there is no Rydberg atom
in the third region). The long dashed curve is the probability
for finding the n = 61 in the left-most region. The probability
for finding n = 61 in the left-most region behaves like the two
atom case and there is very little probability for finding it
beyond the skip region during the first 10 µs.

FIG. 8: The probability for finding the n = 61 state on dif-
ferent atoms for a 2 × 2 grid of atoms. The solid line is the
probability for finding the n = 61 state on the atom it started
on, the dotted line is the probability for finding it on either
of the atoms in adjacent corners, and the dashed line is the
probability for finding it on the opposite corner.


















