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Generation of a broadband xuv continuum in high-order-harmonic generation
by spatially inhomogeneous fields
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We address an efficient scheme to generate a broadband extreme-ultraviolet (xuv) continuum from high-order
harmonic generation emerging from the concept of plasmonic field enhancement in the vicinity of metallic
nanostructures [Kim et al., Nature (London) 453, 757 (2008)]. Based on the numerical solution of a time-
dependent Schrödinger equation, for moderate field intensities and depending on the inhomogeneity of the field,
we are able to increase the plateau region roughly by a factor of two and generate a broadband xuv continuum.
The underlying physics of the plasmon enhancement in harmonic generation is investigated in terms of the
semiclassical trajectories of strong field-electron dynamics, and perfect consistency is found between quantum
mechanical simulations. It is found that the field inhomogeneity plays a critical role in quantum path selection.
After a critical value, we observe a systematic suppression in the long trajectories, suggesting the generation of
a single isolated attosecond pulse. Finally, we investigate the dependence of cutoff position on the order of field
inhomogeneity and find a β2.3∓0.2 scaling.
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I. INTRODUCTION

High harmonic generation (HHG) is one of the most
attractive methods to understand the interaction of intense laser
fields with matter. It is of the paramount importance and is still
a rapidly growing field due to its potential to produce coherent
radiation sources covering a range from vacuum ultraviolet
(VUV) to the soft x-ray region and to generate attosecond
pulses [1]. The HHG process can be described in terms of
the so-called three-step (or simple man’s) model [2]; in this
process, the electron first tunnels through the atomic potential
barrier suppressed by a driving laser field and accelerates, and
then the subsequent motion of the electron in the continuum is
treated classically. When the electric field reverses its sign, the
electron gains kinetic energy and recombines with its parent
ion and radiates energetic photons. The highest kinetic energy
that the electron gains at the continuum is determined by
Emax = 3.17Up, where Up = E2

0/4ω2
0 is the ponderomotive

potential. The highest harmonic frequency that can be gained
from this process is defined by the cutoff formula [2]

qmaxω0 � Ip + 3.17Up, (1)

where Ip is the ionization potential. One of the major branches
of HHG studies has focused on the optimization of HHG
efficiency or extending the plateau region needed in many ap-
plications such as mapping of attosecond electron wave-packet
motion [3] or tomographic orbital imaging [4]. This is mostly
achieved by modifying driving a laser pulse shape such as by
multicolor driving [5,6] or controlling macroscopic parameters
such as pressure, focus position, and medium size [7]. How-
ever, in recent years an alternative technique has emerged, field
enhancement in the vicinity of metallic nanostructures, has
attracted much attention by investigators over the years both
experimentally [8] and theoretically [9]. Field enhancement
from metallic nanostructures is achieved by localization of
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a femtosecond radiation in a nanometer-scale confinement
with no extra cavity. In addition, the field enhancement
largely depends on the geometrical shape of the metallic
nanostructure [8]. In a recent experiment by Kim et al. [8],
in the vicinity of the bow-tie-shaped nanostructure, the driving
laser field is enhanced up to three orders of magnitude between
the vertices. Thus, for field intensities well below the HHG
threshold, it has been possible to generate the 17th (47 nm)
harmonic of an argon gas jet. The underlying mechanism of
the plasmon field-enhanced HHG can be described as follows:
A bow-tie-shaped nanostructure, which has a gap of 20 nm, is
irradiated by a femtosecond laser pulse with a low intensity,
and negative charges are redistributed around one apex and
positive charges around the other one; thus a hot spot of a
highly enhanced field is generated. Consequently, when a gas
jet is injected to this hot spot, an enhanced HHG spectrum
is efficiently generated. One of the first systematic theoretical
investigations of the plasmonic field enhancement in the vicin-
ity of metal nanostructures was provided by Husakou et al. [9]
using a modified version of the Lewenstein model in such
a way that the field inhomogeneity and electron absorbtions
from metal surfaces are incorporated. They demonstrated
that up to three-orders-of-magnitude enhancement in the
field intensity can be achieved, in accordance with Ref. [8].
Furthermore, due to the broken symmetry of the interacting
potential, for a moderate field intensity, they observed even
harmonics along with odd harmonics up to fifth order. Ciappina
et al. [10] have characterized plasmonic field enhancement in
HHG using the modified version of the Lewenstein model,
a one-dimensional time-dependent Schrödinger equation, and
semiclassical trajectories and described the reasons for the
cutoff extension.

In this study we perform a numerical analysis to generate
a spectrum with broadband continuum harmonics from an
inhomogeneous field in analogy with the field enhancement
in the vicinity of a bow-tie-shaped nanostructure, taking the
target atom as a hydrogen atom. The key idea here is to
consider the driving laser field so that it has a spatiotemporal
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distribution. The conventional techniques to generate high-
order harmonics are generally through the interaction of, what
is assumed to be, homogeneous laser fields and gas jets.
However, due to strong confinement of the generated hot
spots, we should treat the interacting field as inhomogeneous.
On the other hand, if the driving laser field is as short as
a few femtoseconds, it is possible to obtain a single burst
of radiation, and a continuum of high-order harmonics can
be generated. Thus, from the superposition of a number
of extreme-ultraviolet (xuv) continuum harmonics a single
isolated pulse of attosecond duration can be generated. If we
consider the driving field as inhomogeneous and the target
atom at the gap of the nanostructure, the constructive electron
trajectories that generate the harmonics around the cutoff
position would gain much high kinetic energy before returning
back to its parent ion. Therefore, the plateau region should be
extended, since the harmonic frequencies are proportional to
the kinetic energy of returning electron.

Many schemes have been proposed theoretically to achieve
single attosecond pulses from HHG. To name a few: Zeng
et al. [11] proposed using two-color fields to generate an xuv
supercontinuum in a two-color field and obtained a 65 as pulse;
Merdji et al. [12] demonstrated that by mixing the fundamental
field with its detuned second harmonic an 80 as pulse can be
obtained; Zhang et al. [13] used a two-color time-gating laser
field and attained a 96 as pulse; Zhang et al. [6] showed that
by adding an xuv pulse to a synthesized two-color field a 40
as pulse can be generated; and Chen et al. [14] demonstrated
that a 38 as pulse can be generated from two-color fields by
preparing target ions in a coherent superposition of bound
states.

The paper is organized as follows. Section II introduces
our model of an atom interacting with an inhomogeneous
femtosecond laser pulse. The method to solve is the time-
dependent Schrödinger equation, and useful physical observ-
ables are described in this section. In Sec. III the influence
of inhomogeneity on the spectral as well spectrotemporal
profile of HHG, carrier-envelope-phase effects on cutoff
position, and temporal variation of attosecond pulses for
different inhomogeneities are discussed. Unless otherwise
stated, atomic units are used throughout this paper.

II. THEORETICAL METHOD

The interaction of hydrogen with an intense laser field
can be modelled by solving the time-dependent Schrödinger
equation (TDSE) in the length gauge,

i
∂ψ(�r,t)

∂t
=

[
−1

2
∇2 − 1

r
+ W (�r,t)

]
ψ(�r,t), (2)

where W (�r,t) represents the interaction term. We assume that
the field is linearly polarized along the z axis. Due to the spatial
dependence of the laser field, we model the interaction term
W (�r,t) by [9]

W (�r,t) = �r· �E(t) = E0z(1 + βz)f (t) cos(ω0t + φCEP), (3)

where E0 is the amplitude, ω0 is the frequency, and φCEP is the
carrier-envelope phase (CEP) of the driving field. The driving
wavelength is taken to be 800 nm. Unless otherwise stated,
φCEP of the field is set to zero. The parameter β determines

the order of inhomogeneity of the field and its unit is in the
reciprocal length. We use a sin-squared envelope f (t), and the
duration of interaction is four cycles (roughly 11fs). To solve
Eq. (2) numerically, we assume that the total electronic wave
function can be expanded in terms of spherical harmonics
times radial functions [15]:

ψ(�r,t) =
L∑

l=0

Rl(r,t)

r
Y 0

l (θ ). (4)

We assume that the driving field is linearly polarized along the
z axis, and the target atom is in the 1s (ground) state. Thus,
we take m = 0. If we insert Eqs. (3) and (4) into Eq. (2) and
recall that

cos θY 0
l = clY

0
l+1 + cl−1Y

0
l−1 (5)

and

cos2θY 0
l = clcl+1Y

0
l+2 + (

c2
l + c2

l−1

)
Y 0

l + cl−1cl−2Y
0
l−2, (6)

we obtain a set of coupled differential equations for the radial
functions of the form

i
dRl(r,t)

dt
=

[
−1

2

∂2

∂r2
+ l(l + 1)

2r2
− 1

r

]
Rl(r,t)

+ rE(t)
{
clRl+1(r,t) + cl−1Rl−1(r,t)

+βr
[
clcl+1Rl+2(r,t) + (

c2
l + c2

l−1

)
Rl(r,t)

+ cl−1cl−2Rl−2(r,t)
]}

, (7)

where cl is the coupling coefficient and has the form

cl =
√

(l + 1)2

(2l + 1)(2l + 3)
, (8)

and E(t) = E0f (t) cos(ω0t + φCEP). We see from Eq. (7) that
each angular momentum channel l is coupled by the laser
field to l ∓ 1 states as well as l ∓ 2 states. Therefore, unlike
conventional numerical solution techniques of TDSE, in our
case, at each time step we need to deal with pentadiagonal
matrices in l coordinates. Equation (7) can effectively be
solved by using well-known split-operator method [15]. In
our calculations we found that a radial grid with a maximum
radius of 300 a.u., grid spacing of 0.1 a.u., and maximum
number of partial waves of Lmax = 100–200 is sufficient
to obtain converged results. The time step is 1/16 384 of
an optical cycle. In order to prevent spurious reflections
from a radial grid boundary, at each time step, the total
wave function is multiplied by a mask function of the form
cos1/8, which varies from 1 to 0 starting from the 2/3 of the
grid. Moreover, the mask function guarantees the absorption
of the components of the wave packet from the surface
of the nanostructure, which does not contribute to HHG.
The photoemission spectrum is calculated from the Fourier
transform of the dipole acceleration a(t).

III. RESULTS AND DISCUSSION

In this section we will investigate the effect of inhomogene-
ity on the spectral profile of the high-order harmonic spectrum.
The typical intensity of the inhomogeneous field is taken to be
300 TW/cm2, and the duration of the laser field is four cycles.
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FIG. 1. (Color online) The effect of β inhomogeneity parameter
on the harmonic spectrum from hydrogen atom initially in the ground
state. The laser field is sin-squared, four cycles, with a peak intensity
of 300 TW/cm2 and wavelength of 800 nm. As the β parameter
increases the plateau region is extended. The HHG spectra obtained
for β = 0.0 and β = 0.003 a.u. are scaled for clarity.

The CEP φ of the driving field is taken as 0. We choose a set of
different values of the β parameter between 0 and 0.005 a.u.
The black line in Fig. 1 shows the harmonic spectrum obtained
from a hydrogen atom when β = 0 a.u., which corresponds
to a homogenous field. As can be seen from this curve, the
cutoff position is at the 46th harmonic, which corresponds to a
photon of 71 eV energy. The frequency of the highest harmonic
fits the cutoff law, given in Eq. (1), assuming that the spatial
distribution of the driving field is homogenous. As shown in
Fig. 1 by the blue (gray) curve, as we set the β parameter
to 0.003 a.u. (which corresponds to a inhomogeneity region
of 17.6 nm), we observe a substantial increase of the plateau
region in agreement with the experiments of Kim et al. [8].
On the other hand, since the pulse duration is short and due to
the temporal profile of the driving field, the peaks that appear
near the cutoff are not harmonic, whereas their separation
increases with the harmonic order. This is the result of the
interference between short and long quantum paths, which
creates relatively large modulation, shown in Fig. 1 by the
blue (gray) line. The nonharmonic behavior lies in the fact that
during the HHG process the cutoff harmonics are emitted only
once, and a single burst of radiation is produced. Moreover, due
to field inhomogeneity the electrons that are released around
the maximum of the driving field are further reaccelerated
in the continuum and gain extra kinetic energy—compared
with the homogenous field—before recolliding with their
parent ions. As can be seen from the same figure, as we
increase the β parameter to 0.005 a.u. the plateau region is
further extended, as would be expected. In this case the position
of the cutoff is at the 103th harmonic. However, one can
see from the green (light gray) curve in Fig. 1 that the
spectral profile of the harmonics between 60 and 103 are much
smoother than the spectrum obtained from β = 0.003 a.u. This
is evidence of a strong quantum path selection and is the key
idea in generating isolated attosecond pulses. It is known that
a broadband xuv continuum can be generated if one of the

FIG. 2. (Color online) Dependence of the field inhomogeneity
on the carrier-envelope-phase (CEP) of the driving field. We choose
two different CEP values, 0 and π . β is set to 0.005 a.u. The field
parameters are the same as in Fig. 1.

electron paths (between a long and short path) that contributes
to the harmonic spectrum is favored. Due to the wave-packet
diffusion effects a reasonable selection would be to favor the
short quantum path.

For short laser fields, whose durations are on the order
of a few femtoseconds, the CEP of the field is primarily
important [16]. In view of this, we investigate the dependence
of HHG driven by an inhomogeneous field on CEP. We use
two different CEP values, φCEP = 0 and φCEP = π . First, the
harmonic spectra observed for φCEP = 0 and φCEP = π would
be exactly the same for homogeneous fields due to the inversion
symmetry. However, for fields where β �= 0, the inversion
symmetry is predominantly broken [9]. In this aspect, we
set β = 0.005 a.u. and solved Eq. (2) with these two CEP
values. The results are presented in Fig. 2. The green (light
gray) line seen in this figure is the same spectrum presented
in Fig. 1, which corresponds to φCEP = 0. However, when
φCEP is set to π , the HHG spectrum dramatically changes.
The cutoff position shrinks back to 70th harmonic, and its
efficiency considerably reduces. A large modulation occurs
between 40th and 60th harmonics. The dramatic difference
in the spectral profile due to CEP arises from the fact that,
while the laser field sweeps the atom, the sign of the charge
distribution seen by an active electron differs from φCEP = 0
to φCEP = π . In other words, during the time of the emission
of the cutoff harmonics, when φCEP = 0 the released electron
experiences a Lorentz force from the field with a positive
sign and is reaccelerated before recombining with its parent
ion. On the other hand, when φCEP = π the electron experi-
ences the field with a negative sign, which screens the electron
motion in the continuum. This results in the reduction of the
cutoff harmonics.

In order to obtain a deeper insight into the effect of
inhomogeneity on the HHG process, the harmonic spectra are
analyzed in terms of time-frequency analysis [17]. Figure 3
presents the time-frequency distribution of the harmonic
spectra generated from a hydrogen atom. The upper panel
represents the time-frequency distribution obtained from the
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FIG. 3. (Color online) Time-frequency distribution of the HHG
spectrum of hydrogen with two different β parameters. Upper panel:
β = 0 a.u., lower panel β = 0.005 a.u. As can be seen from the
graphs, in both cases the cutoff harmonics are emitted only once.
When β is set to 0.005 a.u., there is a substantial increase in the
second peak of the three distinct peaks, and the long path contribution
(right arm of the second peak) almost disappears.

homogeneous field, i.e., β = 0 a.u., and the lower panel
represents the distribution obtained from β = 0.005 a.u. As
can be seen from the upper panel, there is an evidence of
a quantum path interference, which brings out the irregular
spectral structure shown in Fig. 1 with the black curve.
Although there seem to be three noticeable peaks (between
1.5 and 2.0, 2.0 and 2.5, and 2.5 and 3.0 optical cycles)
in the distribution, the leading contribution to the harmonic
spectrum is between the 2 and 2.5 optical cycles, whereas
the strength of the long and short quantum paths (right and
left arms of the peak, respectively) is almost at the same
order. However, when the inhomogeneity of the driving field is
increased to β = 0.005 a.u. the time-frequency distribution of
harmonic spectrum reveals distinct features compared with the
homogeneous field. First, the profiles of the first and the third
peaks are almost maintained, suggesting a negligible effect of
the inhomogeneity of the field. On the other hand, there is a
dramatic increase in the remaining peak due to the effect of the
field inhomogeniety as well as the broken inversion symmetry.
In this case during the time when the electron propagates in the
continuum, it acquires larger kinetic energy before reaching
the parent ion and very energetic photons should be emitted.
An analogous effect of broken inversion symmetry in the HHG
process has been pronounced for a combined linearly polarized
laser field and a static field, where it is possible to observe even
and odd harmonics as well as an extended, multiple plateau
structure [18,19]. With a closer look we can see from the
highest peak in the lower panel of Fig. 3 that the intensity of

FIG. 4. (Color online) Temporal variation of the attosecond
pulses generated from hydrogen atoms. (a) β is set to 0.003 a.u.,
and the harmonics are chosen from the 50th to 70th orders; (b) β

is set to 0.005 a.u., and the harmonics are chosen from the 80th to
100th orders. In both cases roughly a 130 as the pulse is generated.
However, for β = 0.005 a.u. the irregular satellite pulses are largely
suppressed.

the long path (right arm of the highest peak) is almost removed
compared with that of the short path (left arm of the highest
peak), suggesting a generation of an isolated attosecond pulse
in that region.

Next, we investigate the attosecond pulse generation in the
inhomogeneous field by superposing a number of harmonics
near the cutoff of the HHG spectrum. As shown in Figs. 4(a)
and 4(b), for β = 0.003 and 0.005 a.u. we select the harmonics
between the 50th and 70th and the 80th and 100th orders,
respectively. In both cases the banwidth of the continuum
is 20 harmonics, and the intensities of the pulses in both
figures are normalized to unity. The durations of the generated
attosecond pulses given in Figs. 4(a) and 4(b) are roughly 130
as. However, the differences in these graphs are the satellite
pulses around the main pulses, which arise from the long path.
For β = 0.003 a.u. there is a distinct contribution from the
long path, which causes an irregular structure seen around
the main pulse. However, these irregular structures are largely
suppressed when β is set to 0.005 a.u., and a clean isolated
130 as pulse is generated.

The underlying physical mechanism of HHG can be
understood in terms of a semiclassical three-step model [2]. In
this model the motion of the electron under the action of the
linearly polarized inhomogeneous laser field is described by

z̈(t) = −dW (z,t)/dz. (9)

It is assumed that electron is lifted to the continuum at z = 0
with zero velocity, i.e., ż(t) = 0, at the release time ti and
recombines at the recombination time tr . We vary the release
time ti and solve Eq. (9) to investigate the laser-driven electron
trajectories in a inhomogeneous field using a velocity Verlet
algorithm [20]. Thus, the kinetic energy of the returning
electron can be found from Ek(tr ) = ż2(tr )/2. The form of
W (z,t) in this equation is given in Eq. (3). In semiclassical
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FIG. 5. (Color online) Dependence of the recombination time on
the release time of the semiclassical trajectories for different values
of β parameter. The field parameters are the same as in Fig. 1. Note
the substantial variation of the long path released between 1.0 and
1.5 optical cycles.

simulations, we assure that the electron trajectories that result
from absorptions from the metal surfaces do not contribute
to harmonic emission. In Fig. 5 recombination time of the
electron is presented as a function of the release time of the
electron for several values of β between 0.0 and 0.005 a.u.
We first focus on the release time interval between the first
and second optical cycles. We have marked the times of
short and long paths on this figure. Figure 5 shows that the
release and recombination times of the short trajectories are
almost independent of β, but there is systematic mutation
in the long path contribution. The recombination times of
the long path released around the first cycle and around the
1.5th cycle embrace as the inhomogeneity of the laser field
increases, as shown by the bent arrows. This indicates that the
recombination times of the short and long trajectories would
be in phase. However, the long trajectories released around
the 1.5th optical cycle predate to the first optical cycle; hence,
their flight times in the continuum increase. This results a
substantial decrease in the intensities of the long trajectories
due to quantum diffusion effects [21] and may explain the
vanishing long trajectories seen in the lower panel of Fig. 3. In
fact, the reason for the decrease in the intensities is threefold.
First is the wave-packet diffusion effect, as we have already
mentioned. The other (and major) reason lies from the fact
that, by virtue of the three-step model, the field strength at the
time of ionization is lower for long trajectories (first optical
cycle) than for short trajectories (1.5 optical cycles). Since
the tunneling ionization rate is a highly nonlinear function of
the laser electric field amplitude at the ionization time, the
efficiency of the long trajectories would be much lower than
that of the short trajectories. Another reason is the probability
of a nonzero initial velocity of the ionized electron [19], which
cannot be analyzed in terms of a semiclassical three-step
model, since the ionized electron is constrained to have zero
velocity initially.

In Figs. 6(a) and 6(b), the dependence of harmonic orders
on the release time and recombination time of the electron

FIG. 6. (Color online) Dependence of harmonic order on the re-
lease time (©) and the recombination time (�) of the electron. (a) β =
0 a.u.; (b) β = 0.005 a.u. The parameters are the same as in Fig. 1.

is investigated for two different inhomogeneity parameters,
β = 0.0 a.u. and β = 0.005 a.u. In Fig. 6(a) β = 0.0 a.u.
corresponds to a homogeneous field. For this case, the electron
releases near every half cycle and contributes to the formation
of harmonic spectrum. The left and right arms of these peaks
have positive (short path) and negative (long path) slopes with
different emission times. Maximum harmonic frequency of
46ω0 is consistent with the cutoff position shown in Fig. 1 with
the black curve. For β = 0.005 a.u., first, one can see roughly
a factor of 2 increase in the maximum harmonic frequency,
which is 103ω0. This is again consistent with the cutoff
position given in Fig. 1 with a green (light gray) curve. On
the other hand, except for their contributions to the harmonic
spectrum, the short trajectories that are released around 1.5
cycles and recombined between 2.0 and 2.5 cycles are almost
identical in Figs. 6(a) and 6(b). This may be the reason why
the efficiencies of the harmonic spectra presented in Fig. 1 are
almost maintained for different β values. As can be seen from
Fig. 6(b), long trajectories of the main peak are released near
the first cycle, which is roughly a half cycle earlier than that of
β = 0 a.u. and recombines between the 2 and 2.5 optical cycles
with a positive slope. However, as described above, since the
flight times of the long trajectories are larger than the short
ones, the efficiency of the long trajectories are much lower.
This suggests that the short path can be selected efficiently
at a proper β of inhomogeneity to generate a broadband xuv
continuum and a single isolated attosecond pulse.

Finally, we investigate the dependence of the cutoff on the
field inhomogeneity β of the driving field. The β values are
chosen between 0.0 and 0.005 a.u. on a coarse mesh with
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FIG. 7. The variation of the cutoff position of HHG as a function
of field inhomogeneity β between 0.0 and 0.005 a.u. The nonlinear
fit has the form of βx . The parameters are the same as in Fig. 1.

0.001 a.u. The results are presented in Fig. 7. As shown in
this figure, the increase in the order of the inhomogeneity does
not translate into the cutoff extension linearly; rather there is
a nonlinear variation in the cutoff position as a function of
the field inhomogeneity in agreement with Ref. [9]. A simple
nonlinear fit to an analytic function shows that the increase
of the cutoff position scales as β2.3∓0.2. We also checked the
consistency of the dependence of the cutoff position on β

using classical trajectories and the solutions of the TDSE, and

results are in perfect agreement. Although it is not presented
here in detail, we may say that this scaling law is not a
unique expression of the effect of the field inhomogeneity on
a harmonic spectrum; rather our choice of parameters (field
intensity, wavelength, CEP, target atom, etc.) gives rise to
obtaining this formula.

IV. CONCLUSIONS

We have theoretically proposed an alternative scheme
to generate a broadband continuum in HHG by means of
plasmonic field enhancement in metallic nanostructures, based
on the numerical solution of a time-dependent Schrödinger
equation. We used a four-cycle, 800 nm laser field with a
carrier-envelope phase of zero and observed a systematic in-
crease in the cutoff position as well as a broadband continuum
with much less modulation. Our calculations showed that it is
possible to select a short quantum path via suppressing a long
path and to attain a 130 as pulse with a proper choice of field
inhomogeneity. Our method can be considered as a possible
and efficient source to generate a coherent radiation with an
attosecond duration.
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Rev. Lett. 81, 1837 (1998).
[17] P. Antoine, B. Piraux, and A. Maquet, Phys. Rev. A 51, R1750

(1995).
[18] B. Wang, X. Li, and P. Fu, J. Phys. B 31, 1961 (1998).
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